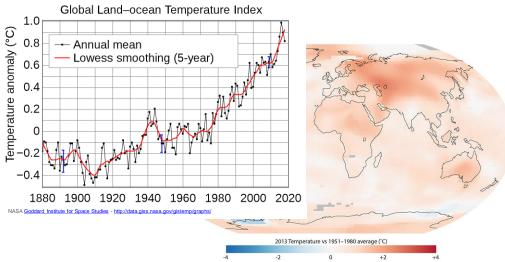
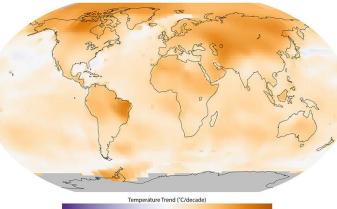


ROYAL SOCIETY OF CHEMISTRY SYMPOSIUM 2019 RE SOURCING OUR RESOURCES REDUCING ENVIRONMENTAL IMPACT

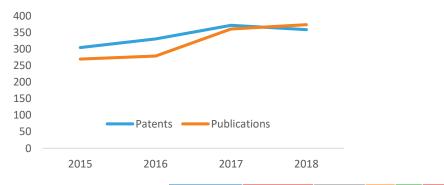

MEMBRANE ENHANCED CHEMICAL AND BIOCHEMICAL PROCESSES

The effect of nanomodification of membrane surface on process efficiencies

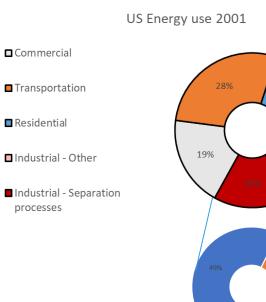


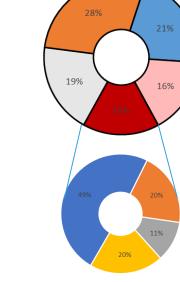
Flemish Institute of Technological Research

1950-2013 Temperature Trend



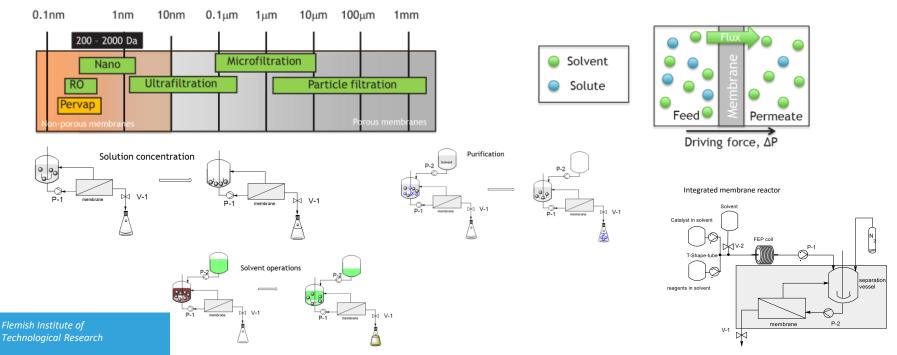
				a construction of the
-0.5	-0.25	0	+0.25	+0.5




PROCESS INTENSIFICATION

Since 2015 : 1284 publications and 1244 patents

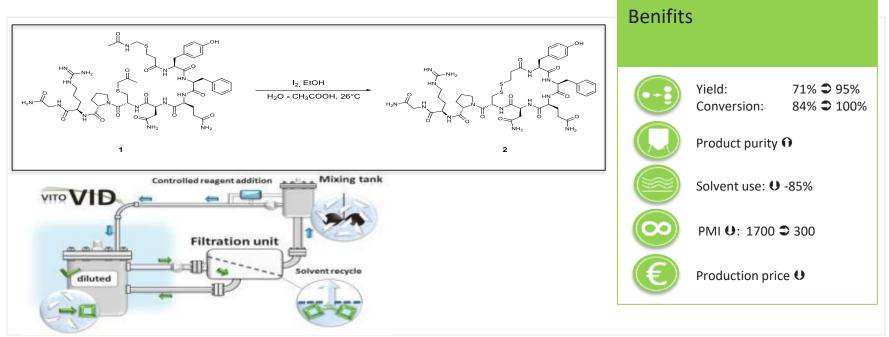
825 Engineering chemical	150 Engineering environmental	49 Chemistry Applied	32 Materials Science Multidiscipli	27 Chemistry Organic		26 MECHANICS		24 Engineerii Mechanic/	
	94 BIOTECHNOLOGY APPLIED	45 THERMODYNAMICS							
328 ENERGY FUELS	MICROBIOLOGY		23 POLYMER SCIE	NCE		RATIONS EARCH	12 AGR ENG	ICUL I	11 ENGINE INDUST
	93 Chemistry physical	39 COMPUTER SCIENCE INTERDISCIPLINARY APPLICATIONS 22 ELECTROC		4ISTRY		AAGEMEN ENCE			
			22 ELECTROCHEN						
153 Chemistry Multidisciplinary	82	39 ENVIRONMENTAL	21	21		11 NANOSCIENCE NANOTECHNOLOG		9 PHYSICS APPLIED	
	GREEN SUSTAINABLE SCIENCE TECHNOLOGY	SCIENCES	WATER RESOU	RCES	10 BIOCHEMISTR MOLECULAR		RY	Y CHEMISTRY ANALYTICAL	


Flemish Institute of Technological Research

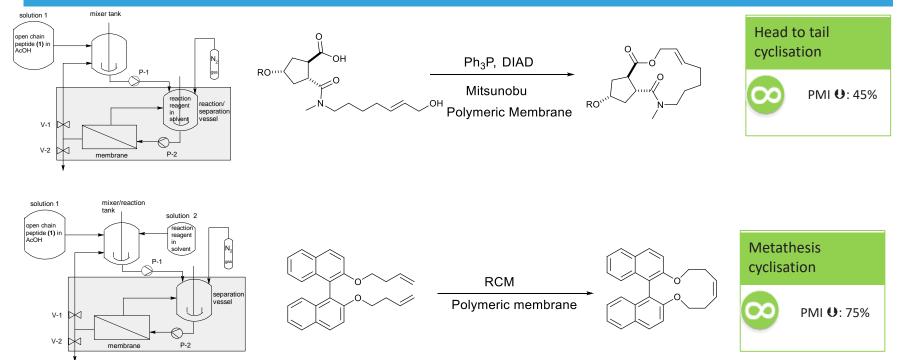
Web of science 2019/05/15; Google scholar 2019/05/15 Nature 532 (7600), 435-438 Oak Ridge National Laboratory. Materials for Separation Technologies: Energy and Emission Reduction Opportunities (2005)

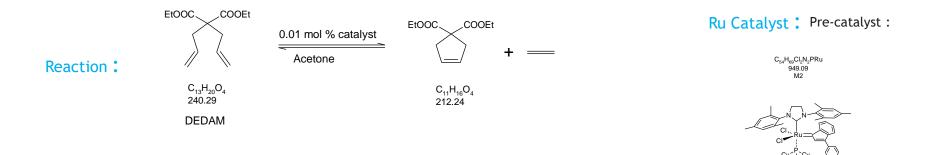
MEMBRANE TECHNOLOGY

Membrane technology is today an additional tool for process chemist, offering alternative and more efficient solutions to existing challenges.



CHEMICAL PROCESSES REQUIRING HIGH DILUTION


Proof of Concept: Peptide Cyclisation



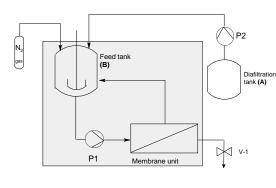
CHEMICAL PROCESSES REQUIRING HIGH DILUTION

RE USE AND RECYCLE OF VALUABLE HOMOGENEOUS CATALYSTS

Peformance on Funmem membrane + benchmark :

 Membrane	Permeability	Catalyst retention	Product retention	
Funmem®	6 lm ⁻² h ⁻¹ bar ⁻¹	87 %	35 %	
0,9 nm TiO ₂	0.3 lm ⁻² h ⁻¹ bar ⁻¹	96 %	60 %	
Polymeric OSN	0.8 lm ⁻² h ⁻¹ bar ⁻¹	91 %	97 %	

RE USE AND RECYCLE OF VALUABLE HOMOGENEOUS CATALYSTS


Catalyst in solvent

reagents in solvent

T-Shape-tube

SUSTAINABLE CHEMISTRY

Off-line processing

At-line processing

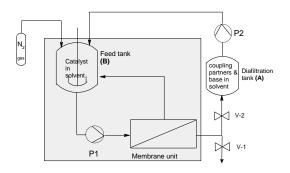
FEP coil

membrane

P-1

P-2

Solvent


₩V-2

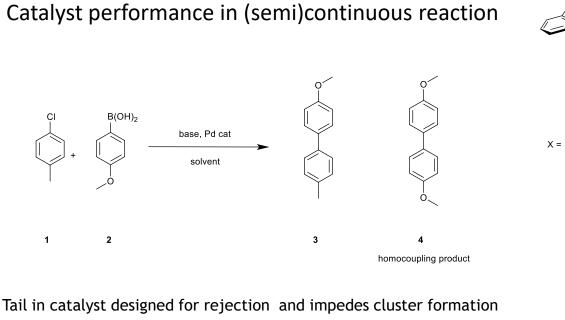
On-line processing

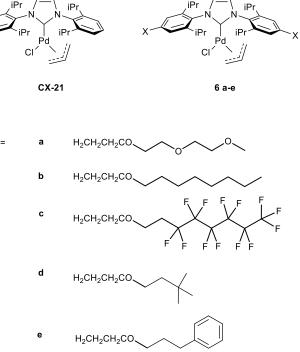
IN

gas

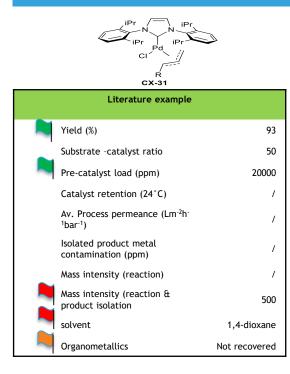
separation vessel

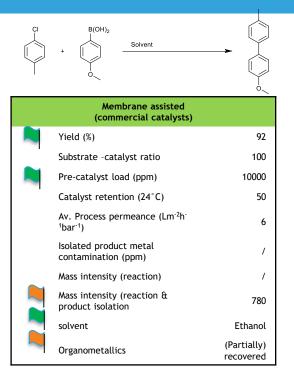
With all processing methods rejection of Pd species > 99 %

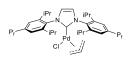

V-1


Reaction Pd content (ppm)	Membrane	Pd in product (ppm)
	$1 \text{ nm C}_8 - \text{TiO}_2$	67
8700	0.9 nm TiO ₂	7
	$0.9 \text{ nm } C_8 H_4 F_{13} - TiO_2$	6
	0.9 nm $C_8 H_4 F_{13} - TiO_2^*$	3

16/01/2018 ©VITO – Not for distribution *PEPPSI catalyst , other CX-31


INCREASING CATALYST TON





INCREASING CATALYST TON

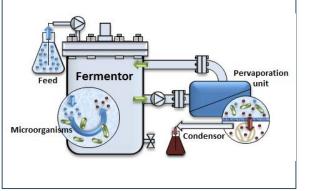
	6 c	
	Membrane assisted (tailed catalysts)	
	Yield (%)	88
	Substrate -catalyst ratio	2000
\sim	Pre-catalyst load (ppm)	500
	Catalyst retention (24°C)	96
	Av. Process permeance (Lm ⁻² h ⁻ ¹ bar ⁻¹)	1
	Isolated product metal contamination (ppm)	16
	Mass intensity (reaction)	51
	Mass intensity (reaction & product isolation	167
	solvent	Ethanol
	Organometallics	Recovered

CONTINUOUS FERMENTATION PROCESSES

SUSTAINABLE CHEMISTRY

Challenges in traditional fermentation

Product toxicity:


- Low product concentrations
- Low productivity
- \rightarrow High purification costs
- ightarrow High waste water volumes
- \rightarrow Energy-intensive separation
- \rightarrow Cost of substrate

Integration with pervaporation

Integration of

- Organophilic pervaporation and
- two-stage clostridial fermentation
- using a membrane-based in situ product recovery technique (ISPR)
- \rightarrow Continuous, selective product withdrawal from reaction medium

Benefits

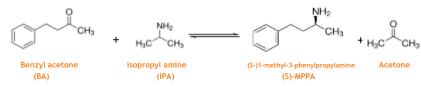
2,5 x production increase by removal of product inhibition

Fermentor cost \downarrow

Water footprint -50%

Steam consumption -50%

Applicable to batch & continuous processes



Production price -10%

ENZYMATIC SYNTHESIS OF CHIRAL AMINES

Chiral amines in enantiopure forms are important chemical building blocks in pharmaceutical and agrochemical industries

Background

- Chemical synthesis of chiral amines still remains a challenge because it requires high chemo-, regio-, diastereo-, and enantio-control
- ω -transaminase is a promising catalyst which produces chiral amines with exquisite enantioselectivity

Limits in aqueous phase:

- Low substrate solubility (BA): only 1,48 g/L (or 10 mM)
- Severe product inhibition by (S)-MPPA

Targets:

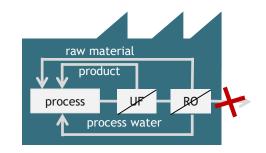
- To establish the enzymatic reaction in solvent phase (n-heptane in preliminary tests) to increase substrate concentration
- In-situ product recovery by MPPA extraction into an aqueous phase by use of a membrane contactor using an aqueous phase as extractant

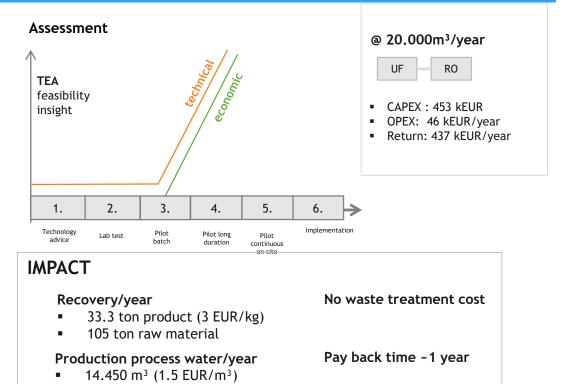
Results

- Higher substrate conversion
- Co-extraction of substrate amine (IPA) solved with NF

Next steps

- Increase the specific productivity
- NF optimization
- Strategies to retain the donor amine selectively in the

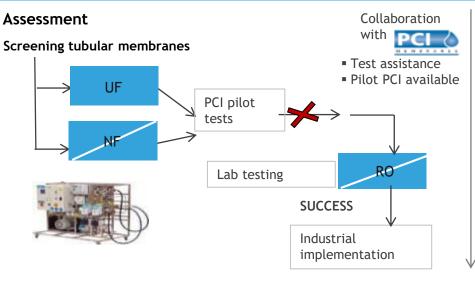

reactor



PRODUCT & RAW MATERIALS RECOVERY

- Product / raw materials in waste stream
- Inhibiting biological waste water plant
- End-of-pipe treatment required

In-process membrane technology


PRODUCT & RAW MATERIALS RECOVERY

Challenge

Testing

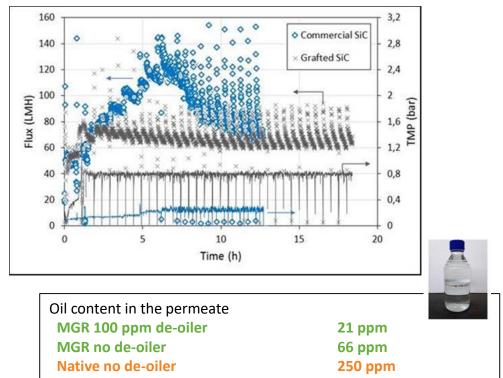
Rinsing water

- Contains high concentration of detergent
- External treatment \rightarrow high incineration cost

1.5-

IMPACT

- Reuse detergent stream
- Reuse waste water
- No waste incineration cost


WW TREATMENT

Fouling solution : real foam - produced water (NL) ~700 ppm oil

Foulants : oil droplets in O/W emulsions

18h filtration in cross-flow, recovery 50% + use 100ppm de-oiler

Technological Research

VISION ON TECHNOLOGY FOR A BETTER WORLD

VITO is an independent Flemish research organisation in the area of cleantech and sustainable development. Our goal? To accelerate the transition to a sustainable world.

Marzio Monagheddu Ph.D Business & Relationship Development Kreuzlingen, Switzerland

Separation and Conversion Technologies VITO NV | Boeretang 200 | 2400 Mol Direct. +32 14 33 69 83 | Mobile: +32 499 77 40 29 Mail: marzio.monagheddu@vito.be

17/05/2019 ©VITO – Not for distribution