Future of biocatalysis – enzymatic reactions in continuous flow

EnginZyme – Unlocking the potential of enzyme chemistry

Through efficient enzyme utilization in both biocatalysis and cell-free synthetic biology applications

EnginZyme's immobilisation platform converts enzymes into cost-effective biocatalyst for multiple industries

The future needs green chemistry

Current chemical industry is dominated by efficient, low cost processes which generate excessive waste and rely on petroleum oil as raw material

Chemical industry operations are highly efficient Continuous flow in fixed bed reactors is *very* common

- High throughput and efficiency
- Catalyst fixed in place
- Reagents flow through continuously
- No catalyst separation
- High reactant concentrations
- Simpler downstream separations

Continuous flow reactors offer reduced capital and operating costs

Everything in nature is produced by enzymes performing reactions inside cells

Harnessing enzyme's capabilities forms the basis for biocatalysis and synthetic biology

Enzymes have the capability to significantly reduce costs and CO₂ footprint of current chemical production

Chemical Process:

- 200 Atmospheres; 500°C
- High GHG contribution
- High energy consumption

Example: Nitrogen Fixation

Enzymatic Process:

- 1 Atmosphere
- Room Temperature
- Low GHG contribution

Taking advantage of this mild and selective chemistry will be essential to reduce carbon footprint of the chemical industry and our reliance on petroleum oil

The challenges facing biocatalysis have limited utilisation of enzymes

- High enzyme costs
- Long development times
- Difficult to operate in continuous flow
- Typically function in water environments only
- Difficult to scale for commodity applications
- Enzyme stability

New technology solutions are required to truly unlock the potential of enzymes

EnginZyme's EziG[™] technology makes enzymes more efficient and easier to use

Heterogeneous biocatalysts for continuous flow fixed bed reactors

Stable, affordable, heterogeneous enzyme catalysts

Universal immobilisation • Minimal activity loss • Repeated enzyme use Active enzymes in any solvent • Simple to operate in continuous flow

EnginZyme technology utilises enzymes more effectively

Universal immobilisation • Minimal activity loss • Repeated enzyme use Active enzymes in any solvent • Simple to operate in continuous flow

EziG technology has been applied across numerous enzyme types 🛛 📛 EnginZyme

Collaboration with Merck and Manchester Institute of Biotechnology:

Nicholas Turner et al., A generic platform for the immobilisation of engineered biocatalysts, Tetrahedron 75 (2019) 327-334

EziG in continuous flow provides high throughput and efficiency

Universal immobilisation • Minimal activity loss • Repeated enzyme use Active enzymes in any solvent • Simple to operate in continuous flow

Translation of EziG results from batch to flow

Kinetic Resolution of R/S 1-Phenylethanol via Selective Acetylation

- Catalyst is CalB lipase immobilised on EziG support
- Target conversion range 20 50% (50% of racemic mixture)
- Reaction conducted with orbital shaking at 1500 rpm

Batch results

Reaction Time:	30 mins
Immobilised Catalyst Loading:	0.3 wt.%
Enzyme loading:	15 wt.%
Conversion:	20%
(R)- α -Methylbenzylacetate ee:	> 99%

Simple and effective immobilisation of CalB Lipase demonstrated with batch reaction

Batch productivity of EziG-CalB lipase is replicated in fixed bed

Kinetic Resolution of R/S 1-Phenylethanol via Selective Acetylation

EnginZyme

Batch productivity of EziG-CalB Lipase replicated in fixed bed • Target conversion in under 2 minutes

Laboratory scale fixed bed reactor on-stream stability demonstrated

Kinetic Resolution of R/S 1-Phenylethanol via Selective Acetylation

Ready for pilot scale validation

120

From laboratory scale to pilot scale reactor

EziG-CalB lipase ready for pilot scale operation • Catalyst prepared at kilogram scales

• Pilot campaign this summer

EnginZyme's automated biocatalyst development platform

Simultaneous process development

EnginZyme

From an enzyme to a validated continuous process

The future of biocatalysis -Multi-step cascade reactions using co-immobilised enzymes

- Multiple enzymes in single reactor
- Enzymes co-immobilised on EziG support
- Mimicking an intracellular process
- Higher substrate concentrations
- Higher yields
- Lower CAPEX and OPEX

Harnessing the power of intracellular biology

Cell-free synthetic biology is the next generation bioproduction

20th Century - 2019 Controlled fermentation

- Low product concentrations
- Raw material losses to cell growth
- Long batch reaction sequence
- Large fermentation reactors
- Expensive downstream processing
- High equipment count and high capital cost

2019 and beyond **In vitro cascades in flow**

- High yields and high product concentrations
- Simpler downstream processing
- Lower equipment count and lower capital cost

Cascade processes can harness the power of intracellular biology more efficiently

EziG immobilisation platform enables cell-free synthetic biology

Biocatalysis in flow opens the door to endless applications

Sustainable production of existing products

Completely novel products

Scalable solution to climate change

- F&F compounds
- Biochemicals
- Sweeteners
- And many, many more...

- Artificial spider silk
- Bendable screens
- Biodegradable plastic
- And many, many more...

Using CO₂ as feedstock enables carbon-negative production

Harnessing the power of intracellular biology • Cascade processes under development at EnginZyme

Thank You

vince@enginzyme.com