

Chemocatalysis – a Tool of Green Chemistry

Florian Baechle, PhD

Leading Scientist & Product Manager Ligands

June 26, 2019

What we do

Custom Synthesis

Small Molecule Analysis

Extractables &

Leachables

DNA Analysis

Medical Device Analytics

Elemental & Trace

Analysis

Environmental

Monitoring

Inhaled Drug Products

Quality Control

Biopharmaceutical Analysis

Process Analytical Technology Probes

Bio Analysis & Cell

Based Bioassays

What we do

Custom synthesis, API manufacturing, Ligands & Catalysis

Solvias – Integrated Services

Creating unique value by utilizing intra-company synergies

Solvias – Integrated Services

Creating unique value by utilizing intra-company synergies

Solvias – Integrated Services

Creating unique value by utilizing intra-company synergies

FIND CATALYST LEADS

• screen large variety of ligands / catalysts

large variety of ligands (~100 mg) (Solvias platform: ~500 chiral ligands)

FIND CATALYST LEADS

• screen large variety of ligands / catalysts

large variety of ligands (~100 mg) (Solvias platform: ~500 chiral ligands)

OPTIMIZE CATALYST LEADS

- optimize reaction conditions
- optimize ligand structure
- study catalyst separation

few ligands (10 g – 100 g)

FIND CATALYST LEADS

• screen large variety of ligands / catalysts

large variety of ligands (~100 mg) (Solvias platform: ~500 chiral ligands)

OPTIMIZE CATALYST LEADS

- optimize reaction conditions
- optimize ligand structure
- study catalyst separation

few ligands (10 g - 100 g)

SCALE UP

- pilot
- prepare / buy ligand / cat. in kg quantities

one ligand (1 – 100 kg/y)

SCALE UP

- pilot
- prepare / buy ligand / cat. in kg quantities

one ligand (1 – 100 kg/y)

Commercial Solvias Ligand Families

Modular Chiral Ligands

Commercial Solvias Ligand Families

Ligands for C-X coupling

Beyond Asymmetric Hydrogenation

How multiple catalytic methodologies for C-C and C-X bond formations benefit from the well-established supply chains of ferrocenylbased ligands.

www.solvias.com

Beyond Asymmetric Hydrogenation

Asymmetric Reductive Addition of Olefins to Ketones

Why would a metal-cat. reductive coupling of olefin derived nuc. be important?

alternatives to classical carbonyl additions

catalyzed asymmetric variants of Grignard

Autotransfer of hydrogen allows alcohol to be reductant and proelectrophile

by-product free carbonyl addition

 lower alcohols can be converted to higher alcohols

Krische et al; Science. **2016**, 354, 300.

Buchwald et al; JACS 2018, 140, 2007.

Asymmetric Reductive Addition of Olefins to Ketones

Why would a metal-cat. reductive coupling of olefin derived nuc. be important?

[M] cat.

reductant

Et₂Zn/Et₃B R₃SiH

H₂, iPrOH

[M] cat.

alternatives to classical carbonyl additions

catalyzed asymmetric variants of Grignard

Autotransfer of hydrogen allows alcohol to be reductant and proelectrophile

by-product free carbonyl addition

 lower alcohols can be converted to higher alcohols

Recent precedence in literature - Ketone allylation with terminal allenes

 $R^1 = H_{H}^{OH} R^2$

Krische et al; *Science*. **2016**, *354*, 300.

Buchwald et al; *JACS* **2018**, *140*, 2007.

Asymmetric Reductive Addition of Olefins to Ketones

Y. Yang, I. B. Perry, G. Lu, P. Liu, S. L. Buchwald, Science 2016, 353, 144–150.

Buchwald-Hartwig Amination with Ammonia

- R. A. Green, J. F. Hartwig, Angew. Chem. Int. Ed. 2015, 54, 3768.
- J. S. K. Clark, C. M. Lavoie, P. M. MacQueen, M. J. Ferguson, M. Stradiotto, Organometallics 2016, 35, 3248.
- J. Schranck, J. Rotzler, Org. Proc. Res. Dev. 2015, 19, 1936.

Buchwald-Hartwig Amination with Ammonia

Amination of Carbamates – a Halogen and Sulfonate free C-N coupling

J. Schranck, P. Furer, V. Hartmann, A. Tlili, *Eur. J. Org. Chem.* 2017, 3496-3500.

P. M. MacQueen, M. Stradiotto, Synlett 2017, 28, 1652-1656.

Expertise meets high-throughput

Discover how the development of heterogeneous catalytic processes benefit from big data and high-throughput experimentation.

www.solvias.com

Heterogeneous Hydrogenation

a Success Story over 120 Years

Routine transformation using standard heterogenous catalysts with selectivities >90% Moderately difficult and/or with tailored/modified heterogenous catalysts and/or S <90% Difficult and/or only in special cases with tailored/modified catalyst and/or S <50%

heterogenous catalyst (modified)

Case study for the application of HTE in Heterogeneous Hydrogenation

Case study for the application of HTE in Heterogeneous Hydrogenation

Case study for the application of HTE in Heterogeneous Hydrogenation

 R^1 = labile C-C bond

Solvias AG

Römerpark 2, 4303 Kaiseraugst, Switzerland

www.solvias.com

Florian Bächle, florian.baechle@solvias.com