Micro Reaction Technology with Macro Process Efficiencies – Multi-Ton Production Millireactor substitutes a traditional Batch Process

ChemSpec - Basel, Switzerland, 26th of June, 2019 Dr.-Ing. Rafael Kuwertz, Project Manager

Microreaction Technology – First Steps in 1995

First Industrial consortium at IMM Mainz – Prof. Ehrfeld

- → Evaluation of potentials of microreactors for technical relevant chemical reaction.
 - Participants e.g. BASF, Daimler Benz, Degussa, DuPont, Hoechst, Hüls, Merck, Rhone Poulenc.
 - > Significant increase of yield of Andrussow reaction by using a micro mixer for pre-mixing of reactants.

Prof. Ehrfeld takes over the baton as pioneer for

microreaction technology

Microreaction Technology – 1997-2000

First conference on Microreaction Technology 1997 – extract preface – IMRET

- > Rising interest of leading companies and research institutes
- Tremendous possibilties of microreactor concepts with huge economic potential
- > Initation of worldwide research and development activities

Microreaction Technology – Integral part of Process Intensification

- > Radically innovative principles (paradigm shift) in process and equipment design
- > Huge Benefits in process and chain efficiency, capital and operating expenses, quality, waste, process safety and more.

Microreaction Technology – 2001 - present

Raising of interest worldwide:

- > Different suppliers of flow equimpment raise their businesses
- Chemtrix, Corning, Vapourtec, Thales Nano etc.
- > Different suppliers of peripherie adjust their product portefolio to flow equipment
- HNP Mikrosysteme, Huber, HiTec Zang etc.
- > Chemical and pharmaceutical companies ask for real production unitsabove the lab and pilot scale

Continuous Flow with Microstructures – Benefits

Challenges for Establishing the Technology Platform Micro-/Millireactors

→ Competition against established technologies in process industries

- > Paradigm change batch-/conti
- In R&D predominantly use of batch reactors for synthesis of new molecules
- Infrastructures of production plants /-logistics predominantly aligned to batch processes
- → Calculation of risk difficult for new technology platforms
 - > Missing or not published references in production scale
 - > Missing knowledge about attractive applications as well as design basics
 - > Adequate robustness for demands of production plants
 - > Risk of investment

Challenges for Establishing the Technology Platform Micro-/Millireactors

→ Critical success factors

- > Visible references in production scale
- > Demonstration of sufficient robustness for production application
- > Strong performance increase
- > Know how about attractive applications/market segments
- > Readiness for stepping in into innovative technology platform micro-/millireactors in China more pronounced than in Europe and US because of long track record of process industries in Europe and US.

China goes ahead with first visible reference in production scale

Attractive Market Segments & Applications

Peroxides	 Explosive reactions Highly exothermic reactions 		
Alcoxylation / Sulphonation	Very fast reactionsLiquefied gas reactions		
Active Ingredients	Fast reactionsMulti-step synthesis		
Precipitation	Fast mixingUniform conditions		

8 4

Examples on lab scale

Hydride reduction using RedAl

Batch:

Temp:	0 °C	
Retention time	e:	8 hours
Yield:		8090%
Conti:		
Temp:	1020	°C
Retention time	e:	40 seconds
Yield:		9598%
Output:		

0,7 kg/hour of isolated product

Grignard Reaction		
Batch:		
Temp:	5	50 °C
Retention time:	f	ew min
Yield:	8	3090%
Conti:		
Temp:	5	50 °C
Retention time:	1	LOO sec
Yield:	9	98%
Output: 0,5 kg/hour		
of isolated product		

And many more...

Lithiation Reaction

Batch:

Temp:	-40 °C			
Retention time:	4 h			
Yield:	80%			
By-product formation				
time-depending				
Conti:				
Temp:	-10 °C			
Retention time:	45-90 sec			
Yield:	96,5%			
Output: 1.0 kg/hour of isolated product				

Production – Analogy to well established equipment

Scale-up Strategy – From micro to millimeter dimensions

R&D and Kilo Lab Scale 0.05 – 10 L/h	Pilot Scale 10 – 100 L/h	Production Scale 40 – 10000 L/h	
Optimization	Validation	Production	
Transfer batch-to-conti Optimizing your processes and products	Mastering your personalized scale-up	Yielding your product as efficient as possible	

11 6

Pathway for implementation – Full Customer Support

Lighthouse Project – Multi-Ton Production Millireactor

Challenges in Batch Plant:

- \rightarrow Strong heat release
- → flammable, explosive and toxic
- \rightarrow Long reaction time

- \rightarrow low efficiency
- \rightarrow poor safety
- → uncontrollable capacity expansion

From Batch to Continuous Production

✓ Increase of Safety

The Chemistry Behind

✓ Increased Production Efficiency

From Batch to Conti in about 8 Months

Millireactor in Production – Lighthouse Reference Project

- \rightarrow 6 Modular Miprowa reactor cores in serial
- \rightarrow 154 channels (18 x 3 x 1200 mm³), each core
- → Dimensions: 7.50 m length, DN 400
- → Total volume: ca. 40 L
- \rightarrow 5000 10.000 t/a throughput
- \rightarrow Commissioning Sept. 2016

Single reactor core

Millireactor in Production – Lighthouse Reference Project

- ightarrow 6 Modular Miprowa reactor cores in serial
- \rightarrow 154 channels (18 x 3 x 1200 mm³), each core
- \rightarrow Dimensions: 7.50 m length, DN 400
- → Total volume: ca. 40 L
- \rightarrow 5000 10.000 t/a throughput
- \rightarrow Commissioning Sept. 2016

Production plant

- \rightarrow Former process in ca. 20 batch reactors (Volume ca. 50 m³)
 - > 100% capacity increase
 - > Significant yield enhancement
 - > Higher product quality
 - > Upgrade of safety
 - Reduction of energy consumption & space footprint

Summary - Platform Micro-/Millireactors

- Establishing as process technology started and proceeds
- Lighthouse reference in production scale visible production capacity 30.000 jato
- Attractive market segments/applications and design basics available
- Time efficient integrated scale-up based on established equipment concepts
- Chinese market goes ahead European market follows

Ehrfeld Mikrotechnik GmbH Mikroforum Ring 1 55234 Wendelsheim www.ehrfeld.com

