

Flame Retardants Additives:

an innovative fitness for use approach

Dr. Albert Jeyakumar, Technical Manager Europe FR-SBU

Co-Authors : Mr. Marc Leifer, Dr. Smadar Admon and Dr. Robert Stenekes (FR-SBU)

- Introduction –ICL-IP
- Flame Retardants Market, Safety trends
- Fitness for Use: SAFR[®] methodology

2

▲ICL –Industrial Products (ICL-IP)

\$5.2bn sales in 2017

Manufacturing sites spread around the world

~13,000 Employees

5 R&D centers with 500 researchers

• 772 granted patents and 316 pending patent applications

Defining ICL's Identity: "Where Needs Take Us"

- Leading Specialty minerals company fulfilling essential needs in Agriculture, Food and Engineered Materials.
- Engineered Materials → Specialty Solutions
 - Innovating to create sustainable fire safety and promoting public safety

Market (R)evolutions

5

- Energy saving (transportation, electricity)
- Communications and interconnection (automotive, appliances, smart homes)
- Miniaturization (E&E components)
- > Display devices

AICL Main Market Trends – Requirements for Flame Retardants

• Chemistry shifts driven by regulation (DBDPO, HBCD)

6

- Environmental concerns and Sustainability
- Cost / efficiency performances
- Low or no impact on overall, non–FR properties
- Energy efficiency: low weight
- Thermal stability: process
- Thermal resistance: useful service life
- Moldability, flowability
- Fitness for use in the final application

▲ ICL Main Market Trends: Standards & Regulations

- EU: Standards' Harmonization, CPR, EN-45545
- > US: Upholstery, furniture compliance suppression
- > Fire Safety criteria evolution:
 - Smoke opacity (time to escape)
 - Smoke toxicity (less casualties)
 - Focus on external ignition (candle) shifted to internal (internal space decrease)
 - Bigger plastic articles & parts, higher contribution to flashover

▲ICL IP approach for addressing market's needs

Need: Address chemistry shifts driven by regulation
 ICL-IP action : Phasing out hazardous substances

- **Need:** Address environmental concerns and sustainability issues
 - ICL-IP action : Launching SAFR[®], enabling users to choose the most sustainable product for the intended use

SAFR[®]

A SYSTEMATIC ASSESSMENT FOR FLAME RETARDANTS

CONTENT

Flame Retardants

Providing safety to modern comfort

What are they?

Responsible choices start with product design

WHAT IS SAFR?

An easy-to-follow systematic assessment framework for flame retardants (FRs)

- Evaluation of specific FRs in their applications
- Enables users to choose the most sustainable product for the intended use
- Science-based methodology

*** Based on both the hazard and the potential exposure** during the intended use

HOW DOES SAFR WORK?

Building on accepted hazard criteria, SAFR assesses the extent to which hazards translate into potential risks due to possible exposure to humans and/or the environment during a product's service life.

HAZARD + EXPOSURE \Rightarrow **RECOMMENDATION**

HAZARD EXPOSURE	LOW	MEDIUM	HIGH	UNACCEPTABLE
LOW POTENTIAL	RECOMMENDED	RECOMMENDED	ACCEPTABLE	out
MEDIUM POTENTIAL	RECOMMENDED	ACCEPTABLE	NOT RECOMMENDED	OBEPHASED
HIGH POTENTIAL	ACCEPTABLE	NOT RECOMMENDED	NOT RECOMMENDED	

ASSESSING HAZARD

OUR STARTING POINT

Defined 13 endpoints which include human health and environment

CRITERIA

Based mainly on the Global Harmonized System (GHS) for classification and labelling

ASSESSMENT Asses the hazard for the FR and its relevant degradation products

FINAL HAZARD SCORE Given according to SAFR[®] hazard categories

THE ENDPOINTS

Environment

- Acute ecotoxicity
- Chronic ecotoxicity
- Persistency
- Bioaccumulation

Where needs take us

Human Health

- Acute mammalian toxicity
- Systemic toxicity/organ effects
- Respiratory or skin sensitization
- Skin corrosion/irritation
- Serious eye damage/eye irritation
- CMR
- ✤ ED

HAZARD SCORING

Hazard Category	Hazard Criteria
Unacceptable Hazard	Very High Human Toxicity OR Very High P* + Very High B**
High Hazard	High P + High B OR Very High P + High Ecotoxicity OR Very High B + High Ecotoxicity OR High Human Toxicity
Medium Hazard	Moderate P + Moderate B OR High P + Moderate Ecotoxicity OR High B + Moderate Ecotoxicity OR High Ecotoxicity OR Moderate Human Toxicity
Low Hazard	When none of the above apply

P* : Persistency
B **: Bioaccumulation

ASSESSING EXPOSURE

OCCASIONAL

Less than daily contact during the intended or primary use of the product (e.g. automotive under the hood equipment, printers' cartridges)

FREQUENT

Daily contact during the intended or primary use of the product (e.g., car seats, external casing of TVs and computers, carpet underlay, upholstery furniture, electrical socket)

RARE

e.g. connectors in electronic/electric equipment, insulation boards, printed wiring boards

Frequency of contact

BLOOMING

Preparation of **plastic samples** according to known formulation

- Ageing of samples at 70°C for 35 days
- Sweeping of samples
- Analysis of filters for bromine

Blooming levels $\mu gBr^{-}/cm^{2}$: Low/No: $Br^{-} \leq 1$, Medium: $1 < Br^{-} \leq 10$, High: $Br^{-} > 10$

LEACHING

Preparation of fabric samples

Soxhlet extraction of the fabric (8 hours)

Water evaporation

Φ Α

Analysis of solid extracts for bromine

Leaching levels mgBr⁻/m² : Low/No: Br⁻ < 5, High: \geq 5

VOLATILIZATION

Preparation of PU foam samples according to a generic formulation (e.g automotive)

VOC and FOG analyses based on VDA 278

Current of inert gas VOC: 30 minutes at 90 °C FOG: 60 minutes at 120

Analysis using GC-MS

Volatilization level mg/Kg: Low: VOC < 50 OR FOG <125 High: VOC ≥ 50 OR FOG ≥ 125

RESULTS – TEXTILES CASE

Flame Retardant	Hazard	Exposure	Uses		
			RECOMMENDED	ACCEPTABLE	NOT RECOMMENDED
TexFRon [®] 9001	L	М	Textile: Upholstery, drapes, carpets, tents		
TexFRon [®] P, P ^{+PL}	L	Μ	Textile: Professional protective clothing		
TexFRon [®] 4002 ^{PL}	L	L/M	Textile: Upholstery, drapes, carpets, tents Transportation: Seats' covers, carpets, covered parts (filters)		
FR-1410	L	н		Textile: Upholstery, drapes, tents Transportation: seats' covers and carpets	
Fyrol [®] FR-2 (TDCP)	н	H+			Textile: Tents
FR-1210 (Deca)	UNACCEPTABLE	NR		BEING PHASED OUT	

OUR APPROACH TO POLYMERICS & REACTIVE FRs

We are developing FRs which are either large polymers or reactive FRs that are chemically integrated into polymer backbones forming flame retarded polymers.

The reactive FRs will behave like polymeric FRs once fully reacted.

100% of ICL products have undergone a SAFR assessment

45 FRs assessed

All new products in assessment pipeline

In 30 applications

In 20 kinds of polymer matrices

RESULTS OF OUR PORTFOLIO ANALYSIS

ICL encourages a more sustainable flame retardant

10 % SAFR[®] **Non-Recommended**

for specific applications

25 % SAFR® Acceptable for specific

applications

WHY SAFR? WHAT MAKES US DIFFERENT?

RISK-BASED

- Transparent methodology
- Can be applied to other plastics additives

CHOICES

- Design phase
- Alternative assessment

SCIENCE

Grounded in scientific facts

The team

The core team: Ilan Elkan, Anantha Desikan, Marc Leifer, Smadar Admon

Tami Weiss-Cohen and the HERA team

Mazal Wegner and the Analytical lab

Eyal Eden and the Plastics Application lab

Ella Rapoport and the Textile lab

Jeff Stowell and the R&D team

Joel Tenney and the advocacy team

Thank You!

www.icl-ip.com

www.safrworks.com safr@icl-group.com

Disclaimer

- Copy or use of this presentation or any part thereof is forbidden, without the prior written consent of ICL. ICL retains all intellectual property interests associated with this presentation, including but not limited to trade names and marks.
- ICL makes no claim, promise or guarantee of any kind regarding the accuracy, adequacy or completeness of the content of the information presented and expressly disclaims all liability for any errors or omissions in such content. ICL does not warrant that the information contained herein is true, up-to-date, or non-misleading.
- ICL makes no warranties hereunder whether express or implied, including, but not limited to, warranties of merchantability and fitness for a particular purpose. ICL shall not be held liable for any damages, whether compensatory, direct, indirect, incidental, special, or consequential, arising out of, in connection with or based on the content of this presentation and accepts no liability for the consequences of any actions taken on the basis of the information provided.
- The information herein is not intended to constitute advice or a recommendation, whether scientific, regarding hazardous materials, chemical exposure or otherwise, and should not be relied upon in lieu of consultation with appropriate scientific advisors.
- ICL is a publicly traded company. The information herein may reflect the ICL's current views with respect to future events or financial performance, which may change. You may not rely on this presentation as providing an analysis of the ICL's financial position or trading prospects. This presentation does not constitute an offer or invitation to purchase any securities, and no part of it shall form the basis of any investment decision in relation thereto.

