

"Research on inhibition of gas hydrate formation in pipelines and armatures using surface active substances "

Chemistry in the Oil Industry XIV Session 8: Flow Assurance

19 November 2015; Florian Stephan Merkel, Heyko Jürgen Schultz, Carsten Schmuck

Outline

- 1. Introduction
- 2. Theoretical background
- 3. Approach of project "InHydRo"
- 4. Experiments / Experimental design
- 5. Results & discussion
- 6. Conclusion & outlook

1. Introduction Schultz group

1. Introduction What are clathrates / hydrates?

- Lat. "clatratus": barred
- Inclusion compounds made of host and guest molecules (like CH₄, CO₂)
- Host = water → also called "Hydrates"
- Ice-like compounds
- Form at high pressures and low temperatures
- → Problematic in pipelines (especially sub-sea or in permafrost regions); causes "Plugging"

2. Theoretical background **Structure of gas hydrates**

	Structure I		Structure II	
Number of water molecules per unit cell	46		136	
Cage description/ notation	5 ¹²	5 ¹² 6 ²	5 ¹²	5 ¹² 6 ⁴
Labeling	U	V	U	W
Number of cages per unit cell	2	6	16	8
Coordination number z _i	20	24	20	28
Composition (theoretical / ideal)	2 U * 6 V * 46 H ₂ O		16 U * 8 W *136 H ₂ O	
Hydration number n	5,75		5,67	

Source: Schultz

Source: Khalik

2. Theoretical background Formation of gas hydrates

- 2 Phases (similar to crystallization):
 - Nucleation phase
 - Growth phase
- Nucleation
 - For a long time: Labile cluster theory (Sloan, Christiansen)
 - Today, there are different theories:
 - Nucleation at the interface
 - Local structuring nucleation
 - Amorphous intermediate structures ("Blobs")

Actual mechanism remains unexplained to this day!

2. Theoretical background "Blob" theory

Source: Jacobson

2. Theoretical background Formation of gas hydrates

Important in all theories:

- Contact between gas and water phase is critical for hydrate formation
- Higher turbulence leads to higher hydrate formation rate
- Most important parameter for determining inhibitor performance:
 - Induction time (time between start of experiment and onset of macroscopic hydrate formation)
- Induction times are stochastic with limited predictability for hydrate onset
 - **→**Large number of experiments needed (for statistically significant predictions)

2. Theoretical background Inhibition of gas hydrate formation

- Physical inhibition
 - Reduction of pressure
 - Increase of temperature
 - Removal of water
- Chemical inhibition
 - Thermodynamic Hydrate Inhibitors (THI)
 - Low Dosage Hydrate Inhibitors (LDHI)
 - Kinetic Inhibitors (KHI)
 - Anti-Agglomerants (AA)

Source: Figlhuber

3. Approach of project "InHydRo" Inhibition via surface active substances

<u>Idea</u>

- Conventional inhibitors have to be dosed in the pipeline permanently and have to be separated again after leaving the pipeline → expensive, bad for environment
- Plugging in pipelines often occurs in places, where there is a change in flow geometry (bends, valves, ...)
- Development of a hydrate-inhibiting coating, which can be applied to the pipeline in critical regions, seems very promising to solve the plugging problem

4. Experiments "Pillars" of project InHydRo

1. A new and innovative method to determine the inhibition suitability of the substances in a reliable and accurate way was developed.

- 2. Screening of substances/research on inhibition suitability for structure II (sII) inhibition has been conducted. Experiments took / take place at pressures <10 bar. Additionally, possible inhibitors have been synthesized and tailored.
- 3. "Optimal" parameters (pressure, temperature, type of stirrer, ...) for high pressure experiments (to determine sl inhibition suitability) have been determined in extensive experimental series.
- 4. After the determination of optimal parameters, a high-pressure screening of substances for sl inhibition suitability took place.

4. Experiments "Pillars" of project InHydRo

- 5. Parallel to the experiments, kinetic analyses of the high pressure experiments were conducted. The focus/goal of this analyses was to gain in-depth knowledge of the formation mechanism and to develop a predictive model to allow better inhibitor performance evaluation.
- 6. Gas hydrate structures have been determined via RAMAN-spectroscopy.

7. The whole project is undergoing permanent audits and evaluation as well as optimisation to ensure the best possible accuracy of results.

4. Experiments Procedure for determining sll inhibition suitability

- sll screening takes place in IKA LR 2000 system
- Experimental procedure:
 - Water/THF-mixture (molar ratio 17:1) is given into reactor. THF acts as a promoter, accelerates the screening and ensures sll hydrate formation
 - Inhibitor is given into reactor (varying conc. of 1, 3 and 5 %(wt.)); reactor is closed
 - Reactor is tempered to 20 °C ± 0,5 °C (with stirrer set to 50 min⁻¹)
 - Reactor is purged with methane (with stirrer off)
 - Reactor is filled with methane
 - Reaching of target pressure is set as starting point of experiment
 - Stirrer is set to 50 min⁻¹, temperature is set to target value

A sign for onset of hydrate formation is a decrease in pressure with parallel increase in temperature (because enthalpy of formation is about -57 kJ /mol).

4. Experiments Procedure for determining sl inhibition suitability

- sl screening takes place in Parr 4568 reactor
- Experimental procedure:
 - Water (249,5 g ± 0,5 g) and inhibitor (varying conc. of 1, 3 and 5 %(wt)) are given into reactor; reactor is closed
 - Reactor is tempered to 20 °C ± 0,5 °C (with stirrer set to 200 min⁻¹)
 - Reactor is purged with methane (with stirrer off)
 - Reactor is filled with methane (via Coriolis-Mass-flow-meter)
 - Reaching of target pressure is set as starting point of experiment
 - Stirrer is set to 200 min⁻¹, temperature is set to target value

A sign for onset of hydrate formation ("induction time") is a decrease in pressure with parallel increase in temperature (because enthalpy of formation is about -57 kJ /mol).

Sample hydrate formation experiment, no inhibitor

Induction times of chosen experiments, Inhibitor A, sI inhibition

Induction times of chosen experiments, Inhibitor A, sll inhibition

Comparison of mean sI induction time

Comparison of mean sll induction time

6. Conclusion & Outlook

Examination of surface active substances is feasible with developed method

- The importance of concentration effects is shown
- Up to date no "perfect" inhibitor has been found; "good" sll-inhibitors are not automatically "good" sl-inhibitors → Screening on-going; alternatively, two inhibitors included in one coating
- Kinetics are describable, but hydrate forming mechanism has to be further elucidated for developing a complete mathematical model

 Induction times have been examined under various statistical aspects (normality, Dixon-Q, ANOVA,...)

6. Conclusion & Outlook

Experiments are a good starting point for deepening research:

- Optimisation of the discovered substances in regards to the inhibition of both hydrate structures
- Examination of further possible inhibitor candidates
- Further variation of inhibitor concentration (< 1 %(wt.))
- The development of an inhibiting surface is following two parallel tracks:
 - Application of promising inhibitors as a coating and development of a coating "primer" to fixate inhibitors on a defined substrate
 - Further elucidation of the hydrate formation mechanism with various analytical methods (Raman, High-speed camera system, ...)

Thank you for your kind attention!

Questions?

References

- Schultz, H. J.: "Zum Gashydratabbau mittels Mammut-Pumpen-Prinzip"; Fraunhofer IUSE Umsicht; Fraunhofer IRB Verlag; Dissertation, Universität Dortmund, 2004; S. 4-10
- Khalik, B. M. S.; "Phase Behaviour, Thermodynamics and Kinetics of Clathrate Hydrate Systems of Carbon Dioxide in Presence of Tetrahydrofuran and Electrolytes, Proefschrift, Technische Universiteit Delft, 2009, S. 3
- Sloan, E. D., Koh, C. A.; "Clathrate Hydrates of Natural Gases, Third Edition"; Chemical Industries, CRC Press, Boca Raton, 2008; S. 133
- Booker, R., Boysen, E.; "Nanotechnology for Dummies"; Wiley Publishing, Inc., Indianapolis, Indiana, 2005; S. 88-89
- FigIhuber, F.: "Experimentelle Untersuchungen des Phasenverhaltens bei der Bildung von Gashydraten aus Gasgemischen"; Bachelorarbeit, HSNR, 2011
- Figlhuber, F., Hirschfeld, S., Kalkreuter, M.; "Inhibierung der Gashydratbildung mit Hilfe beschichteter Oberflächen"; Masterprojekt, Hochschule Niederrhein, 2013
- Jacobson, L. C., Hujo, W., Molinero, V., Amorphous Precursors in the Nucleation of Clathrate Hydrates. J. Am. Chem. Soc. 2010, 132, 11806–11811, DOI: 10.1021/ja1051445
- http://www.pet.hw.ac.uk/research/hydrate/hydrates_why.cfm; access time 14:02, 2014-02-13

Legal notice

Florian Stephan Merkel

Chemische Technik / Chemical Engineering

Hochschule Niederrhein / University of Applied Sciences Niederrhein

Fachbereich 01-Chemie / Faculty of Chemistry

Raum S E20 / Room S E20

Adlerstr. 32

47798 Krefeld, Germany

Tel.: +49 2151 / 822 - 4041

Fax: +49 2151 / 822 - 4013

florian.merkel@hs-niederrhein.de

Experiments

Accuracy of measurements, Parr 4568

Parameter	Sensor	Accuracy	
Temperature T	Juchheim PT100	0,3 to 0,8 % of measured value (at experimental temperatures)	
Pressure p	Ashcroft OEM-pressure transducer G2	±2 bar	
Pressure p (after optimization)	Emerson Rosemount 2088	0,10 % of measured value	
Agitator torque M	Parr DR-2500	0,10 % of measured value	
Mass m	Sartorius LE1003	±0,001g	
Conductivity	Inolab-cond 740	±1% of measured value	