Regulation of Produced Waters using Risk-Based Approach

Manchester | 2nd – 4th November 2015 **Dr Kirit Wadhia** | Principal Environmental Consultant

Presentation

- Company perspective
- Produced water
- Risk Based Approach (RBA) trial
 - Organisation & implementation
 - Outcome
- OSPAR perspective
- UK RBA Implementation Programme
 - Methodology
 - Assessment
 - Inference

Some key facts

- Global presence in all major oil and gas markets
- 2014 revenues of NOK 2.3 billion
- Formerly known as Aker Process
 Systems, as part of Aker Solutions
- Now part of Aker group subsidiary of OSE listed Akastor ASA

620 employees worldwide

Global company with local presence

Starr representatives in

17 countries and six continents

Our solutions maximize the production through the entire lifecycle of onshore and offshore installation

Oil Solutions

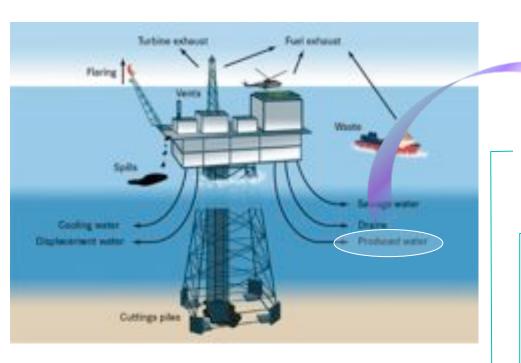
We offer separation and processing solutions for oil based on a unique combination of extensive field experience, high-end product portfolio and complete package solution.

Gas Solutions

With more than 20 years of operational experience and process expertise, we offer conventional and innovative solutions for separation and processing of high quality gas.

Water Solutions

We offer environmental friendly solutions for water treatment, which treats liquids such as produced water, sea water or MEG to remove impurities in order to deliver fluids of required qualities.



Lifecycle Services

We provide full aftermarket services on our installed base, value-adding brownfield solutions from diagnostic studies to full revamp projects, and training services.

Discharges

Naturally occurring substances

Produced Water

- Anionic and cationic surfactants
- Emulsifiers/Demulsifiers
- Oxygen scavengers
- Scale inhibitors
- Defoamers
- Biocides
- Corrosion inhibitors

UK - WEA Testing Evaluation

- Test samples practicalities
 - collection, shipping & logistics
- Sample stability
- Test sensitivity
- Platform / produced water characteristics bioassay performance

Risk based approach - produced water management

Project Organisation

National Coordinator

- Installations selection
- Co-ordination process
- Assess outcome

WEA Study Contractor

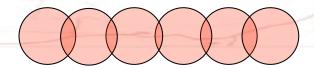
- Offshore WEA Testing
- **Onshore WEA Testing**
- Data analysis & reporting
- Sample shipment logistics

WEA Study Contractor

- Field equipment supply
- MARA/LumiMARA
- Data analysis & reporting
- Manage & Organise

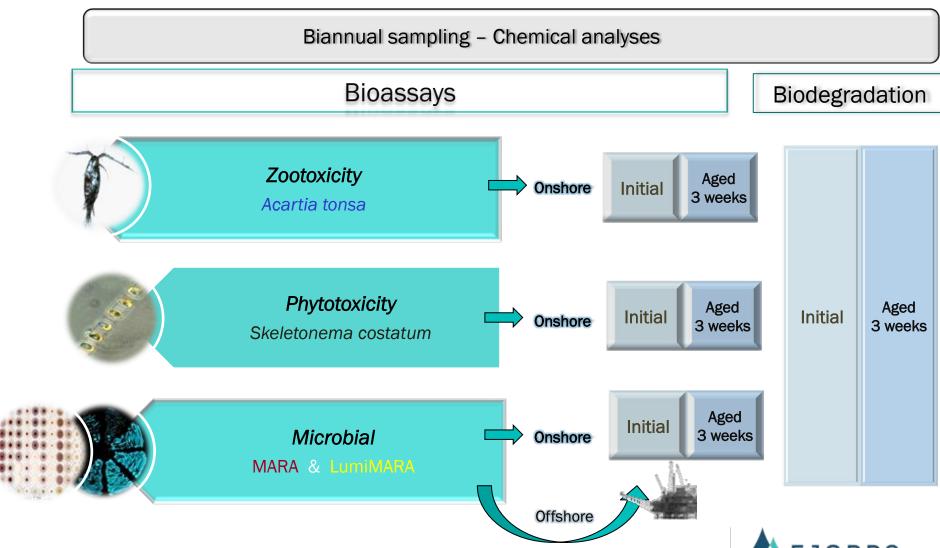
Biannual Testing Laboratories

Operators

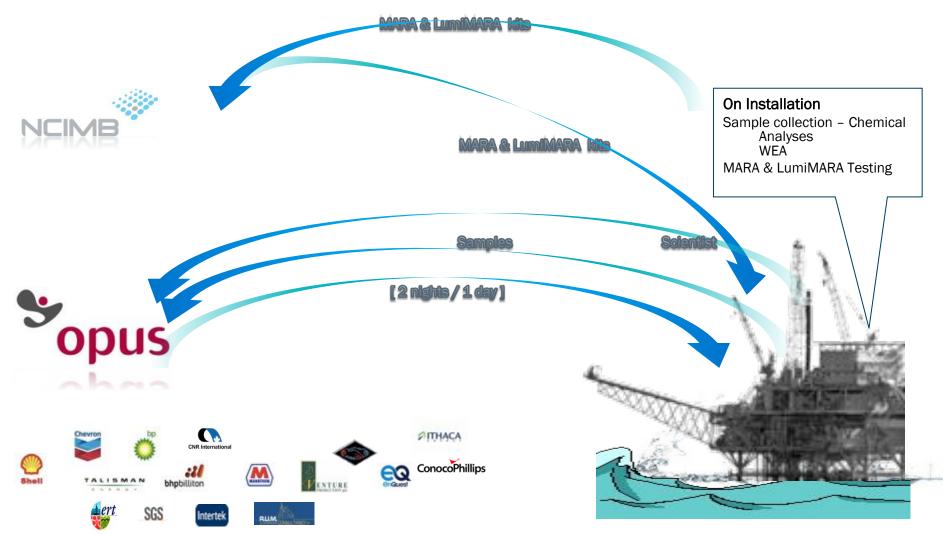


Installations

15 Installations



- Central North Sea (8)
- North North Sea (4)
- South North Sea (1)
- Irish Sea (1)
- West of Shetland (1)

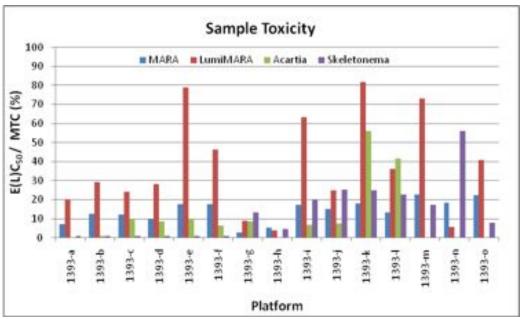


Testing

Offshore Sampling

Assays' Performance & Samples' Stability

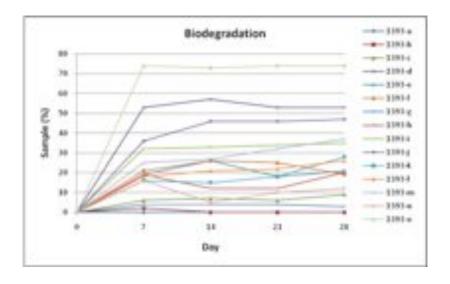
- Offshore vs. onshore testing
 - MARA: 1 platform
 - LumiMARA: 3 platforms
- Onshore Initial vs. Aged
 - MARA: 1 platform
 - LumiMARA: 1 platform
- Acartia and Skeletonema some variability evident


Significant difference

Significant difference

 Suggests samples can be collected and sent back onshore as with the chemical biannual sampling programme

Comparison of Bioassays


How do the different WEA bioassays compare?

- No single assay was the most sensitive for all 15 platforms
- Also found in the Dutch, Norwegian and Danish studies
- MARA and LumiMARA multispecies tests covered the range of test results for the higher trophic species

Biodegradation

Platform	COD (mgO ₂ /mg)	Addition Rate (mgCOD/I)	Day 7 (%)	Day 14 (%)	Day 21 (%)	Day 28 (%)
1393-а	0.01880	277	0	0	0	0
1393-b	0.01622	321	2	0	0	0
1393-с	0.00700	743	6	7	6	9
1393-d	0.00118	2203	53	57	53	53
1393-е	0.00022	11800	19	26	18	21
1393-f	0.00042	6190	21	26	25	19
1393-g	0.00048	10950	4	4	4	3
1393-h	0.00183	1424	19	12	12	20
1393-i	0.00017	15300	32	33	34	35
1393-j	0.00080	3250	36	46	46	47
1393-k	0.00070	3720	16	15	18	28
1393-I	0.00063	4160	18	21	22	26
1393-m	0.00104	2500	25	27	32	37
1393-n	0.00044	5900	16	5	10	12
1393-о	0.00215	1210	74	73	74	74

- All platforms showed different biodegradation potential
- Maximum biodegradation was seen by day 14

Comparison of Platforms

- Gas platforms
 - · highest salinity
 - · higher toxicity ranking
- Water cut / Production [Low]; Oil content discharges [High]
 - · generally more toxic
- [Early] Production phase
 - · higher toxicity with some bioassays
- Location
 - not a factor
- Chemicals use (↓/↑)
 - toxicity correlation ↓
- No biodegradation [Early] Production phase (Gas/Oil); Oil content [High], Water cut [Low], Produced Waters [Complex], Chemicals usage (↑)

Summary

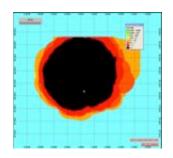
- Samples collection and processing
 - no practical constraints
- Tests
 - Differentiate platforms
 - No single assay most sensitive
 - Other studies similar findings
- MARA and LumiMARA
 - distinct fingerprints
- Salinity
 - factor for bioassays
- Sample ageing
 - relevant but not significant

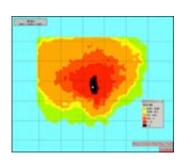
Conclusions

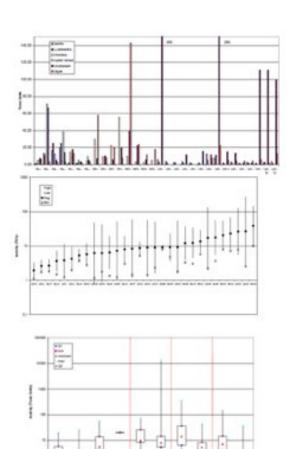
- Test samples practicalities
 - collection, shipping & logistics
- Sample stability
- Test sensitivity
- Platform / produced water characteristics bioassay performance
 Able to discriminate
- Risk based approach produced water management

Assess pros & cons

Feasible – no major issues


Limited evaluation


Need for >1 test



OSPAR Implementation Strategy

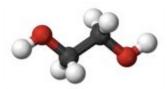
- Member states consultations
 - criteria; parameters
- WEA testing
 - 30 Installations UK, N, NL, DK
- RA Guideline doc (Manual)
- Comparative Study

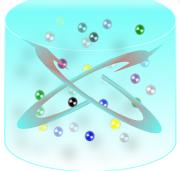
Risk Based Approach

• 30mg/l oil discharge limit

Produced Water

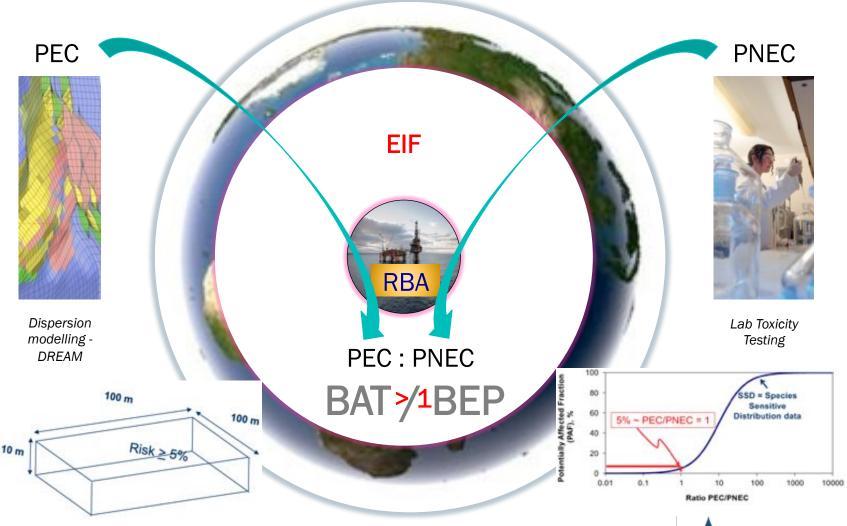
OSPAR Recommendation 2012/5

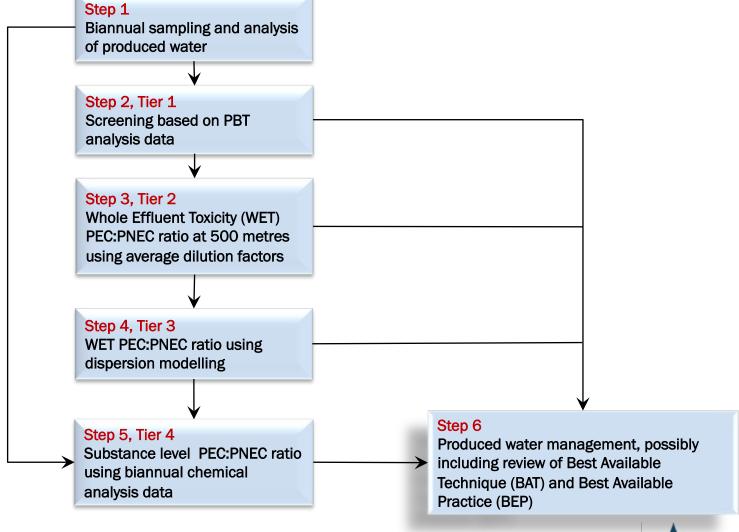




Whole Effluent Assessment

Production chemicals


Naturally occurring substances



Environmental Impact Factor

UK Methodology for Risk Based Approach

Step 1
Biannual sampling and analysis of produced water

- clean glassware
- composite sample
- no air space
- no preservation / freezing

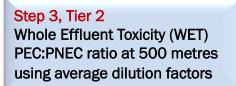
Step 2, Tier 1

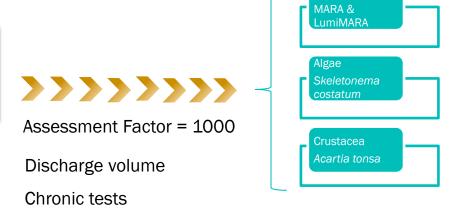
Screening based on PBT analysis data

Criterion	PBT criteria	vPvB-criteria		
Р	Half-life >60 days (d) in marine water or >40 d in freshwater*, or half-life >180 d in marine sediment or >120 d in freshwater sediment*	Half-life >60 d in marine water or freshwater, or >180 d in marine sediment or freshwater sediment		
В	Bio-Concentration Factor (BCF) >2,000	BCF >5,000		
Т	Chronic NOEC <0.01 mg/l or CMR or endocrine disrupting effects	Not applicable		

^{*} For the purpose of marine environmental risk assessment, where marine half-life data is available it is used in preference to freshwater data.

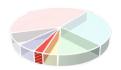
Step 6

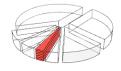

Produced water management, possibly including review of Best Available Technique (BAT) and Best Available Practice (BEP)



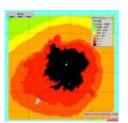
© 2015 Fjords Processing

Slide 23

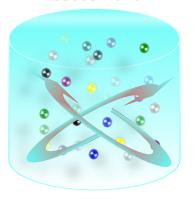

FJORD

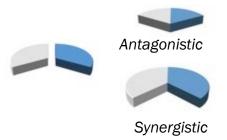


Bacteria



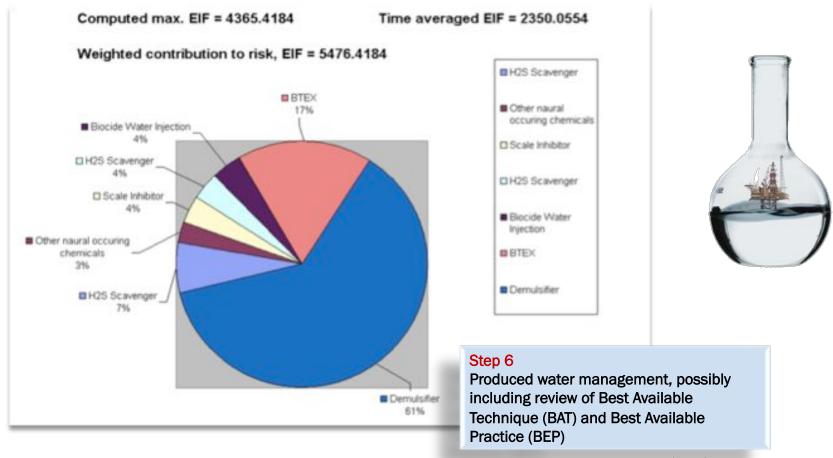
Component with worse Hazard Quotient (HQ) [toxicity] – Greatest impact

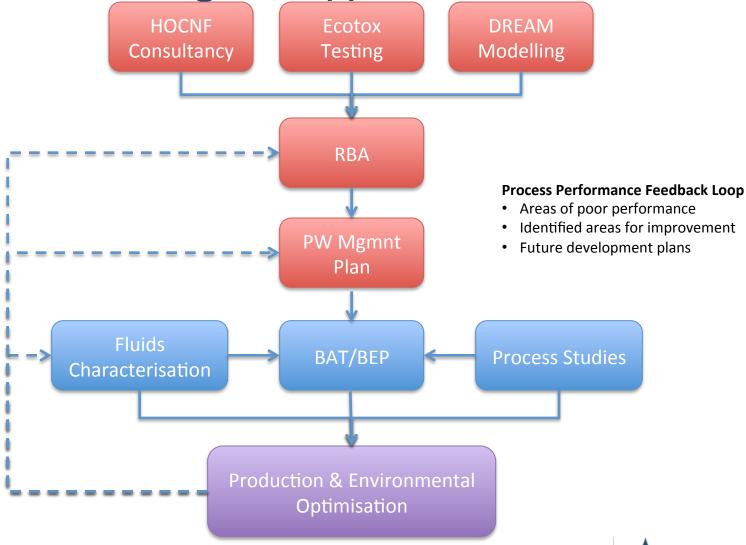




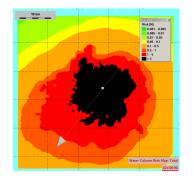
Step 4, Tier 3
WET PEC:PNEC ratio using dispersion modelling

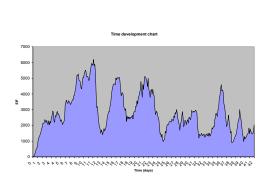
Step 5, Tier 4
Substance level PEC:PNEC ratio using biannual chemical analysis data


Whole Effluent Assessment



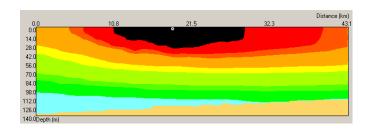
Example of major contributors to EIF presented graphically at product level


Fjords Processing RBA Approach



RBA Assessment Case Study - Asset 'X'

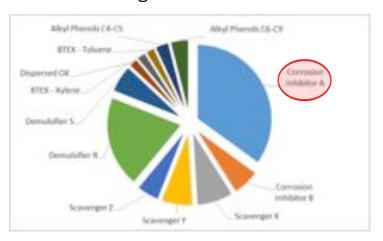
Maximum risk of whole effluent model



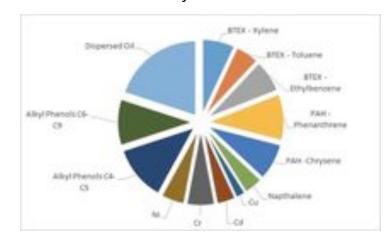
 Whole effluent time averaged risk model (black ≥5% risk)

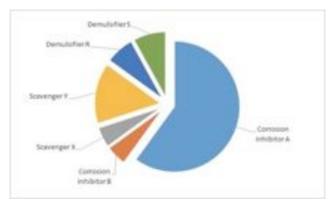
10 ha make year and y

Whole effluent time development



Transect through whole effluent maximum risk model



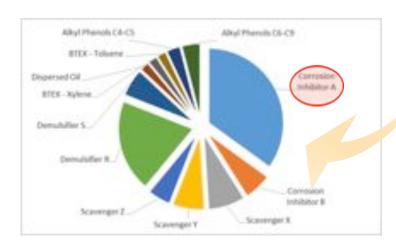

RBA Assessment Case Study - Asset 'X'

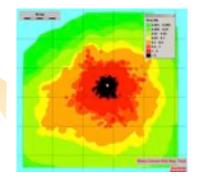
 Produced water components contributing to >1% of overall risk

 Model of naturally occurring substances only

 Added chemicals modelled independently

 Time averaged risk model of specific chemical


RBA Assessment Case Study _ Asset 'X'



Biannual chemical analysis + WET

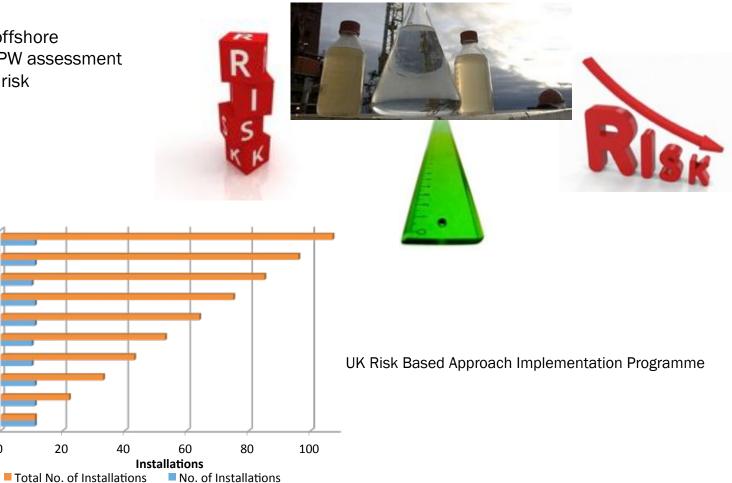
Not PBT

Modelling at chemical level

EIF > 1

BAT / BEP

OSPAR RBA Perspective


By 2020 all offshore installations PW assessment to determine risk

> 2018 H2 2018 H1 2017 H2 2017 H1

2016 H2 2016 H1

2015 H2

2015 H1 2014 H2 2014 H1

