

EUROPEAN OILFIELD SPECIALITY CHEMICALS ASSOCIATION

Quarter of a Century of Regulatory Collaboration

Development of a Generic Exposure Scenario under the EU REACH Regulation for hydraulic fracturing operations (such as shale gas) in response to the European Commission's Recommendation on high volume hydraulic fracturing

Nik Robinson

Outline

- EU Drivers
- New REACH Requirements
- Use Descriptor System
- Specific Environmental Release Category
 - Hydraulic Fracturing Process
 - Potential Process Emissions
 - The SpERC document
- Commission & ECHA comments
- Conclusions

European Commission

Recommendation 2014/70/EU:

on minimum principles for the exploration and production of hydrocarbons (such as shale gas) using high-volume hydraulic fracturing

Communication COM/2014/023:

on the exploration and production of hydrocarbons (such as shale gas) using high volume hydraulic fracturing in the EU

New REACH Requirements

- "Hydraulic fracturing" referenced in REACH dossiers
- More specific use descriptors to be used
- Develop models or relevant SpERCs for environmental exposure

Use Descriptor System

Sector of	Sector of Use (SU)	
SU2a	Mining, (without offshore industries)	
SU2b	Offshore industries	

Process Code (PROC)				
PROC1	Use in closed process, no likelihood of exposure			
PROC2	Use in closed, continuous process with occasional controlled exposure			
PROC3	Use in closed batch process (synthesis or formulation)			
PROC4	Use in batch and other process (synthesis) where opportunity for exposure arises			

Product Codes (PC)					
PC8	Biocidal products (e.g. Disinfectants, pest control)				
PC20	Products such as ph-regulators, flocculants, precipitants, neutralization agents				
PC37	Water treatment chemicals				
PC41	Hydraulic fracturing chemicals (proposed but not confirmed)				
PC0	Other (use UCN codes)				

Environm	vironmental Release Categories (ERC)		
ERC4	Industrial use of processing aids in processes & products, not becoming part of articles		
ERC7	Industrial use of substances in closed systems		

Specific Environmental Release Category

- Working group: IOGP, EOSCA, Cefic
- Two documents:
 - SpERC Factsheet
 - Background Document
- SpERC: standardised assessment of the environmental risks associated with generic use of substances in specific application

Summary of emissions

- Emissions for air only;
 water and soil controlled
- Air emissions are summed to give total emission factor
- Total emission factor applies per fracturing treatment
- Emissions take place over 4d for fluids and 2d for proppant
- These are worst case (shortest duration) scenarios

The Hydraulic Fracturing: Mitigation

 Transport of water, fracturing fluid products, and proppant from offsite

Transport not considered under REACH

Emission factor for transport: 0% to air

2. Storage/handling of water, fracturing fluid products, proppant and treated recovered fluids

Pad design/construction limits exposure to ground and surface waters

Storage/transfer no significant losses expected

Emission factor for storage/transfer: 0.3% to air

3. Handling/blending of fracturing fluid

Emission of fracturing fluid product handling: 1.2%

4. Injection of fracturing fluid

Emission of fracturing fluid products: 0%

5. Subsurface fracturing

Two main concerns for pathway:

- Fracture propagation
- Well integrity

- 5. Subsurface fracturing
- Fracture propagation, part 1

Sufficient separation e.g. >600m used to protect groundwater resources

- 5. Subsurface fracturing
- Fracture propagation, part 2

Fracture direction varies with depth, ~600- 1000m depth tendency for horizontal rather than vertical propagation predominates

- 5. Subsurface fracturing
- Well integrity

Isolation of hydrocarbons and pressure containment is basis of wellbore design/construction and are specified by best practices and guidelines

Emission: 0%

6. Analysis and treatment of recovered fluids

20-75% of initially injected fracturing fluid may be recovered during flowback

Gas separation & flaring may lead to some emissions, also storage

Emission from handling/storage/flaring: 2.3% to air

7. Regulated waste disposal or reuse of recovered fluids

 Regulated disposal - where waste fluids are processed by licensed waste contractors

Emission respectively: 0.3% / 0% / 0.3% to air

Summary of Emissions

Operation	Estimated Emissions to air (%)			
	Fracturing fluid product			Proppant
Transport	0			0
Storage and handling	0.3			0.03
Handling and blending	1.2			0.02
Injection of fluid	0			0
Subsurface fracturing	0			0
Treatment of recovered fluid	2.3			0
Waste: re-use on-site	0.3			0
disposal off-site		0.3		0
injection on-site			0	0
Total emissions per fracture	4.1	4.1	3.8	0.05
Average emissions per day	1.025	1.025	0.95	0.025

SpERC Factsheet

Background Document

BACKGROUND INFORMATION DOCUMENT SUPPORTING THE GENERIC EXPOSURE SCENARIO FOR THE USE OF CHEMICALS IN THE EXPLORATION AND PRODUCTION OF HYDROCARBONS (SUCH AS SHALE GAS) USING HIGH-VOLUME HYDRAULIC FRACTURING

1. Introduction

On 22 January 2014, to the exploration and fracturing' (2014/70/E sustainable developme a framework for environd including its use during

- I. Scope of Generic Exposure Scenario according to REACH
- 2. Description of the hydraulic fracturing operation
- 3. Use of fracturing fluid products in hydraulic fracturing
- 4. Emission characterization for the hydraulic fracturing operation
- 5. Summary of emissions
- 6. Conclusions

EU Commission & ECHA comments

- The work was presented to EC DG Env. & ECHA
- Whilst generally well received some points raised:
 - Consider foreseeable accidents
 - EC/ECHA not convinced on well integrity
 - Further consider fate of substances in WWTW
 - Examples of relevant Human
 Health scenarios

Conclusions

- IUCLID 6: requirement to use Product Code PC41 for substances used in Hydraulic Fracturing
- IOGP, EOSCA & Cefic have worked jointly to develop a SpERC for Hydraulic Fracturing
- Final amendments in response to ECHA & EC will lead to publication of SpERC in Q4 2015
- Please use SpERC, run scenarios, and feedback!

Acknowledgements

The Hydraulic Fracturing Exposure Scenario Task Force:

- Joke Coen, Anadarko
- Paul-Michael Bever, BASF
- Sven Peter, BASF
- René van Sloten, CEFIC
- Rosalie Virgone, CEFIC
- Jonathan Getliff, Chevron
- Ziad S. Naufal, Chevron
- Nathalie Vallotton, Dow
- René Hunziker, Dow

- Nik Robinson, EOSCA
- Elizabeth Shepherd, Eversheds
- Miriam Leon Paumen, ExxonMobil
- Jose Antonio Ruiz, ExxonMobil
- Sebastian Kroczka, Halliburton
- Alessandro Torello, IOGP
- Joy Worden, Shell
- Phillipe Charlez, Total
- Esteban Munoz, Wintershall

Nik Robinson secretary@eosca.eu