

Dr. José W. Nieuwenhuijzen 23 June 2004

 Syncom is a contract research organization (CRO) specialized in organic synthesis

Market share world wide (CROs)

• Market \$ 250 million;

share Syncom 2%

• About 3000 chemists;

share Syncom 2%

• Synthetic organic portion; share Syncom >5%

Employees

 Employees 84 77 chemists (43 Ph.D, 9 Masters, 25 Engineers)

Employers

- Synthetic Organic Chemistry chiefly for two industries:
 - Pharmaceutical industry
 - Organic materials

10%

90%

Clients

Our clients include major pharmaceutial and chemical companies:

Altana Pharma (D) Aventis (USA) DSM Pharma Chemicals (NL) Eli Lilly & Co. (USA) Fuji Photo Film (JP) Organon NV (NL) Pfizer Inc. (USA) Philips Research Laboratories (NL) Solvay Pharmaceuticals (NL / D) Wyeth (USA)

Sales of enantiopure drugs

\$7 billion (2002)

\$9.5 billion (**2005**): 49% traditional, 36% chemocatalysis, 15% biocatalysis

Rouhi, M.A. Chem. Eng. News 2004, June 14, 47-62.

Methods for obtainment of enantiopure drugs

Classical Resolution

•Trial-and-error approach with 20-25% chance of success¹

- •Solution would be a faster screening method with a higher success rate
- Time tested technology

•Still the most prevalent method for separation of enantiomers in industry

¹ Jacques, J.; Collet, A.; Wilen, S.H. *Enantiomers, Racemates and Resolutions*, Wiley, New York, **1981**.

Dutch Resolution

- Use of a mixture of resolving agents results in:
 - higher enantiomeric excess
- Resulting crystals display a nonstoichiometric ratio of resolving agents
- A family of resolving agents has structural similarity and is stereogenically homogeneous

Vries, T.; Wynberg, H.; van Echten, E.; Koek, J.; ten Hoeve, W.; Kellogg, R.M.; Broxterman, Q.B.; Minnaard, A.; Kaptein, B.; van der Sluis, S.; Hulshof, L.A.; Kooistra, J. *Angew. Chem. Int. Ed.* **1998**, *37*, 2349

Families of basic resolving agents

Kellogg, R.M.; Nieuwenhuijzen, J.W.; Pouwer, K.; Vries, T.R.; Broxterman, Q.B.; Grimbergen, R.F.P.; Kaptein, B.; La Crois, R.M.; de Wever, E.; Zwaagstra, K.; van der Laan, A.C. *Synthesis* **2003**, 1626.

Families of acidic resolving agents

X = H, Cl, OMe P-mix

X = H, Me, OMe T-mix

X = H, Me, Br M-mix

•Peachy-Pope resolution on 2 mole scale

- •Yield 28%, 98% ee in first salt
- •GC: ratio phenylethylamines 1:1:1

•Overall yields 86-96% over 2 steps; product separates from reaction mixture in both steps.

•Resolution with L-Leu on 2.1 mol scale furnished (+)-isomer in 99+% ee in 34% yield.

•Resolution of mixtures of racemic sulphonic acids possible

Wynberg, H.; Pouwer, K.; Nieuwenhuijzen, J.W.; Vries, T.R. *PCT Int. Appl.* WO 01/014327 **2001** to DSM

Example III: β-aminophenylpropionic acid

- Screening of resolution : best result with P-mix
- On 6 mmol scale 20% yield and 82% ee
- Single resolving agents gave salts with *ee*<10%
- Later on kg scale with tartaric acid

Dutch Resolution on large scale

- Mixture of resolving agents:
- Expensive
- Difficult to recycle (ratio)
- Limited use
- Screening method

Understanding Dutch Resolution

- Some family members are not or only poorly incorporated (ratios in Angewandte article)
- Not-incorporated family member: effect on resolution
- "The dog that didn't bark"? (Sherlock Holmes)

First experiment

•PE-II-mix: *o,p*-nitroPEA + PEA: Nitro-PEA often not incorporated

•Resolution of MA with PEA in the presence of 10% 1:1 o,p-NO₂PEA

Entry	Additive	Yield (%)	<i>ee</i> (%)	S-factor
1	-	68	14	0.19
2	1:1 <i>o,p</i> -NO ₂ PEA	37	55	0.41

Turbidity measurements

- Indications that kinetic factors play a role
 - Observation that resolution with additive precipitates at lower temperature

Experimental set-up

•Computer detects temperature and turbidity versus time

•Vessel is connected to programmed water bath

Less soluble salt (S)MA(S)PEA

More soluble salt (R)MA(S)PEA

Does it work?

- Screening for known difficult resolutions
- Angewandte article: ratios
- Several resolving agents and additives:
 - Phosphoric acids
 - Phenylethylamines

Phosphoric acids (I)

•Resolution of *m*-methoxyphenylethylamine with phencyphos

•10% chlocyphos or anicyphos as additive

Entry	Additive	Yield (%)	<i>ee</i> (%)	S-factor
1	-	41	14	0.11
2	10% chlocyphos	29	53	0.31
3	10% anicyphos	33	28	0.18

Phosphoric acids (II)

•Resolution of *o*-chlorophenylethylamine with phencyphos

•10% nitrocyphos as additive

•No nitrocyphos found in the salts!

Entry	Additive	Yield (%)	<i>ee</i> (%)	S-factor
1	-	58	22	0.26
2	10% nitrocyphos	36	86	0.62

Phenylethylamines (I)

- •Reverse resolution of *o*-chlorophenylethylamine with mandelic acid
- •Addition of 5 or 10% nitro-PEA
- •No nitro-PEA found in the salts!

Entry	Additive	Yield(%)	ee	S-factor
			(%)	
1	-	39	44	0.34
2	5% (<i>S</i>)-nitro-PEA	16	62	0.20
3	10% (<i>S</i>)-nitro-PEA	10	87	0.17

Phenylethylamines (II)

Resolution at different concentrations

Application in large scale resolutions

- If additive is not incorporated in the salt, then easy recovery of resolving agent from the salt
- The mother liquor with resolving agent and additive can be re-used
- It is cheaper to use only a few percent of an additive instead of three expensive resolving agents
- Resolutions can be performed at higher concentrations

Nieuwenhuijzen, J.W.; Grimbergen, R.F.P.; Koopman, C.; Kellogg, R.M.; Vries, T.R.; Pouwer, K.; van Echten, E.; Kaptein, B.; Hulshof, L.A.; Broxterman, Q.B. *Angew. Chem. Int. Ed.* **2002**, *41*, 4281.

Conclusions

- Dog that didn't bark is important
- 10% additive results in higher *ee* and sometimes higher S-factor (Second generation Dutch Resolution)
- DR is a useful screening method for nucleation inhibitors
- Some inhibitors are not incorporated
- What are criteria for a good nucleation inhibitor?
- Prediction of nucleation inhibitor?

Screening for nucleation inhibitors (I)

 NH_2

Acknowledgements

- Prof. Wijnberg
- Prof. Kellogg
- Ton Vries
- Kees Pouwer
- Marcel van der Sluis
- Jan Dalmolen
- Analytical Department
- Reinier Grimbergen
- Carla Koopman
- Bernard Kaptein
- Rinus Broxterman
- Bert Hulshof

Prof. VliegJoanne Loh

Weizmann Institute of Science

Prof. Lahav