# Lonza 'Factory of Tomorrow' for Flow Processes and MicroReactors

Lonza

Practical Continuous Flow Technology, Munich, Germany

Dominique Roberge / Lonza Ltd, 3930 Visp / 5 June 2013© Lonza

# **Re-des**ign the Chemical Routes with the Concept of Flash Chemistry in Flow



- Flow Processes / Microreactors lead to drastic improvements
  - Excellent heat transfer & mixing
  - Exact control of residence time
  - Segregation of feeds, small volume, robust (pressure) etc.

Inherently Safer Design from the high level of confinement

= Intensified Mini-Plant Concept

# Reaction Classification & Advantages

#### Type A reactions

- Very fast (< 1 s)</p>
- Controlled by the mixing process
- Increase yield through better mixing/heat exchange

### Type B reactions

- Rapid reaction (10 s to 30 min)
- Predominantly kinetically controlled
- Avoid overcooking and increase yield

### Type C reactions

- Slow reaction (> 30 min)
- Batch processes with thermal hazard
- Enhance safety
- Need intensification





# **Microreactors Are at the Heart of a Dramatic Shift in API Production**

It enables continuous processes based on plug flow reactors with minimal volume of reagents, rapid dynamic responses and robustness, good temperature control, efficient mixing, etc.







# Video of a Gas-liquid Type A Reaction in the FlowPlate® MicroReactor



# Agenda

- Reactor design for scale-up
  - Parallelization / Numbering-up illusion

**Process intensification** 

- Impact on production unit >> Factory of Tomorrow
  - Example 1. Organometallic reaction
  - Example 2. Azide chemistry



# Grignard Reaction as a Test Reaction for Manifold & Heat Exchange Performances



- Feed-1: Dimethyloxalate (15 wt%), rest DME
- Feed-2: Grignard (19 wt%), rest THF
- Temperature: -15°C, all feeds pre-cooled
- Stoichiometry: Grignard / Dimethyloxalate = 1.15
- Flow rate: 40 g/min in total with

1 or 4 injection points (Grignard)



# Limitation of Pressure Driven Systems – Avoid Manifold / Parallelization







# **Plate Size to Drive** Scale-up: FlowPlate® MicroReactors

# **Development Reactor**

- View the chemistry
  - Chemical systems are metastable!
- Test different structures
  - Ensure stoichiometry

#### FlowPlate<sup>®</sup> Lab

# Production Reactors

- Design as a key ingredient to scale-up
  - Avoid parallelization
- Enable Clean in Place
  - Multi-purpose & ready for cGMP

Plate Size: A6

Plate Size: A5







# As Small as Needed and Use "Micro" Where Useful

Multi-scale design to maximize heat transfer and optimize mixing

but allowing variable residence time modules > gain volume

- Up to several hundreds of mL
  - seconds to minutes
- Variable channel depth
  - to limit pressure drop

# Can be coupled with residence time modules

- Several liters
  - up to 30 minutes



Flow rate from 15 to 600 mL/min No internal parallelization Micro dimension = 500 µm Larger dimension = 2 mm





# Scale-up Strategy Conventional Technology versus MRT



Production Scale Modules

Apparatuses used at the early stage of process development need to have the potential for further scale-up.

# **Typical** Projects in our Pipeline

| Projects  | Formula                           | Ρ      | Т    |
|-----------|-----------------------------------|--------|------|
|           |                                   | [bar]  | [°C] |
| Project 1 | Aggressive chemistry (corrosion!) | 85     | 250  |
| Project 2 | Organo-lithium reactions          | Normal | -30  |
| Project 3 | Fischer-Indole synthesis          | 20     | 170  |
| Project 4 | Acid-catalyzed cyclization        | Normal | -40  |
| Project 5 | Nucleophilic substitution (CI)    | 20     | 220  |

#### Test new technological approaches

Hydrogenation, Electro-dialysis, membranes, ozonolysis...



# **Example 1: FlowPlate® MicroReactor to Control Reaction Heat**

# 2-Step Synthesis: Lithiation and Coupling



### Some Disadvantages

Plugging = Lonza patent applied Ultrasonic De-plugging System

### First reaction: Type A, highly exothermic ( $\Delta$ Tad > 75°C)

Microreactor

# Second reaction: Type B, exothermic ( $\Delta$ Tad < 25°C)

Static mixer under adiabatic conditions

# **Ultrasonic De-Plugging System**

- Optimize to use with the FlowPlate<sup>®</sup> MicroReactors
- Ultrasonic System to enable stable operations over days / weeks
- Ultrasound is generated in the liquid > to create true cavitation
- Optimal for spot plugging like in the mixing zone or exit
  - Imperative for organometallic reactions with BuLi



# **Microreactor Technology Leads to Dramatic Process Intensifications**

Process intensification to enable inherently safer processes leading to a production paradigm

- Lower reactor investment
- Less manpower
- Higher flexibility
- Enhance safety
- Faster change-over
- "Factory of tomorrow"





# Earlier Pilot Plant using Microreactor Technology

# **Key Features**

- Multi-purpose system
  - Modular
  - Hastelloy
  - T = -80 to +180°C
- ATEX standards
- Qualifiable for cGMP production
- 3 dosage lines
  - 1 8 bar
  - 5 500 g/min (per line)



Track record 2 tons of isolated product 20 m<sup>3</sup> processed fluid

# **Example 2: Azide Chemistry in Microreactors**

### Azide-Nitrile Addition to make Tetrazole Derivatives





### Typical Type C reaction requiring several hours

The mixture was heated under a N2 atmosphere at 100-105°C for 50 h

- Segregation of Feeds: NaN<sub>3</sub> prepared in a special containment and precisely mixed in the reactor avoiding batch bulk handling
- Volume Minimization & Robustness: Reaction in flow performed in 10 min at 220°C

# The Future of Flow Processes: Full Integration of MRT in Production Units

#### 

#### Currently the MR is used to increase reaction yield & safety



# Future will lead to fully integrated flow processes: MR and more...



# Reaction and Work Up Integrated in One Flow Unit

Mini-Plant concept to enable **New Processes** and extend the design space of how we perform chemistry

### **Key Features**

- Microreactor for a flash reaction
- CSTR for precipitation
- High pressure valve
- Filter to removal salt
- Wiped film evaporator
- Fraction collector

## Throughput

 More than 1 kg/day of product; distillation is limiting



# Lonza "Factory of Tomorrow" for Continuous Flow / MRT

#### Aim: huge process intensification via flow

#### Cabin concept to enable high flexibility

- Use of various equipment: microreactors, static mixers, extraction column, distillation (thin-wiped film, etc.)
- Various flow rates, high pressures & temperature
  - Up to several tons
  - 100 bar 300°C > hydrogenation

#### Faster Scale-up and change-over

- Non ATEX
- New concept for cGMP qualification

>> Overall goal is to reduce drastically the costs of goods

#### Throughput

- 900 mL → 10 kg/day
- 3600 mL → 40 kg/day



# **"Factory of Tomorrow"**

Head Tanks



# **Economical Gain: Batch Versus Flow**

| Example 1: Process development in clinical trials / kg scale                                         |                                                                                                   |  |  |
|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--|--|
| Batch Process                                                                                        | Flow Process                                                                                      |  |  |
| Reactor volume = 250 L                                                                               | Reactor volume = 250 mL                                                                           |  |  |
|                                                                                                      | Faster change over & cleaning                                                                     |  |  |
|                                                                                                      | Manufacturing gain = up to 30%                                                                    |  |  |
|                                                                                                      |                                                                                                   |  |  |
| Example 2: Commercial manufacturing / ton scale                                                      |                                                                                                   |  |  |
|                                                                                                      |                                                                                                   |  |  |
| Batch Process                                                                                        | Flow Process                                                                                      |  |  |
| Batch Process<br>Reaction time = 10 - 14 h                                                           | Flow Process<br>Reaction time = 0.2 h                                                             |  |  |
| Batch ProcessReaction time = 10 - 14 hReactor volume = 10 m³                                         | Flow Process<br>Reaction time = 0.2 h<br>Reactor volume = 0.03 m <sup>3</sup>                     |  |  |
| Batch ProcessReaction time = 10 - 14 hReactor volume = 10 m³Cycle time = 21 h                        | Flow ProcessReaction time = 0.2 hReactor volume = 0.03 m³Cycle time = 16 h                        |  |  |
| Batch ProcessReaction time = 10 - 14 hReactor volume = 10 m³Cycle time = 21 hProductivity = 764 kg/d | Flow ProcessReaction time = 0.2 hReactor volume = 0.03 m³Cycle time = 16 hProductivity = 977 kg/d |  |  |

# Infrastructure Overview

#### FlowPlate®



Portable skid mounted units anywhere

- Visp FCC
  - Nansha, China
  - Our customers

#### Laboratory System

Flow labs fully integrated with kg-Labs

#### 1-150 g/min Few g to tens of kg

- Your green and sustainable process of tomorrow

#### **Factory of Tomorrow** Piloting at lower costs

#### **Commercial Manufacturing**

A++

Modular, flexible on skid mounted units

150-600 g/min 0.1–5 tons campaigns

- Plugging issues solved

- Fully automated
- Scale-up concept tested

0.6- 5 kg/min 5-80 tons campaigns

- Fit for any scale

- Streamlined and simplified processes Drastic reduction in costs of goods

# **Conclusions**

Flow technologies are the heart of a quantum leap in pharmaceutical manufacturing leading to greener processes at lower costs

Design new chemical routes

Lonza is a leading manufacturer of chemicals using flow processes and advanced technologies

The central part of the lab development is the microreactor

### Acknowledgments & Contacts

- N. Kockmann, R. Forbert, and O. Kappe (external)
- dominique.roberge@lonza.com