Technological aspects of Encapsulation via Melt Extrusion Technology

ChemSource Symposium 27-28 June Amsterdam

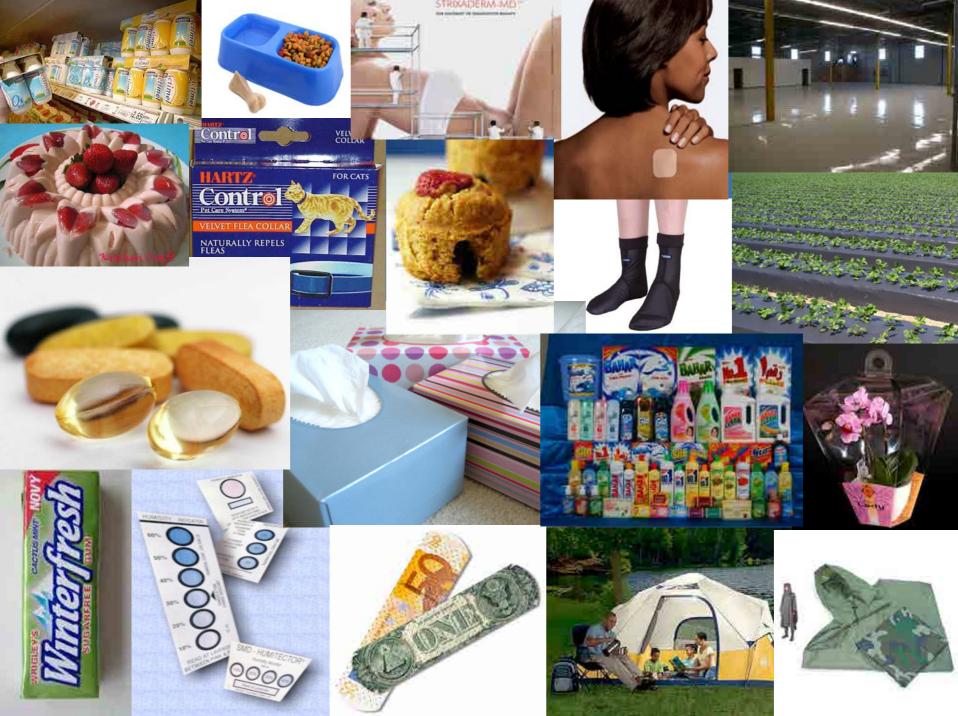
Gülden Yılmaz, WUR, Biobased Products

Encapsulation

Encapsulation is a commonly applied technology for, a.o.:

- Protection and stability
- Masking core material properties
- Better handling
- Safety

AGENINGE


Controlled release

Can be achieved using several technologies & materials:

Combination of materials usually preferred

Thermoplastic processing technologies gaining

Encapsulation via melt extrusion

- Well explored technology
- Compact, continuous (melting, modification, mixing, shaping) & flexible
- Minimal amount of solvents
- Low cost
- Suitable for numerous matrix materials & encapsulants
- Suitable for large volumes

But:

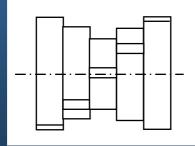
Requires a combination of specific expertise

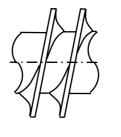
Outline

- Introduction to extrusion technology
- Processing issues for encapsulation
- Products & applications
- Future prospects

Extruders

- Thermo-mechanical mixers with one or more screws in a barrel
- Transfer of material usually by rotation of the screws
- Barrel/screws can be heated/cooled
- Energy input: Mechanical energy via shearing Heat transfer through the barrel wall





Screws

Large pitch Small pitch Conveying/ transport elements

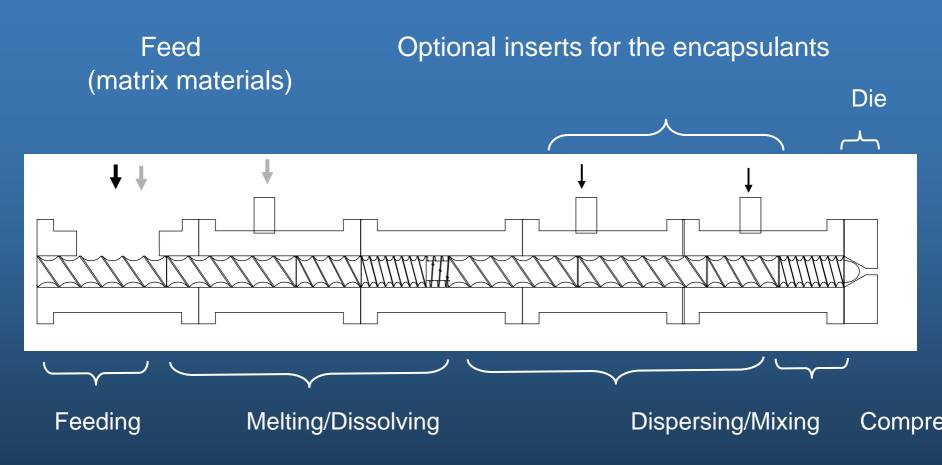
Kneading Mixing elements

Reverse element

Extruders for encapsulation

Co-rotating, double screw extruders, with sinusoidal screws (self-wiping) are preferred:

- Narrow, well-defined residence time
- Mixing performance is optimal, since the surfaces of the screws move towards each other
- Modular screw design


Processing for encapsulation

5 integrated processes and zones of the extruder

- The feeding zone
- The melting, dissolving / conveying zone
- The mixing / dispersing zone
- The conveying / compression zone
- The end-zone, or the die

Schematic representation

When performing encapsulation via extrusion

- Consider Sensitivity
 T, O₂, shear, pressure, light, moisture
- Stability may a problem
 Further processing, application, storage or consumption
- Controlled release should be possible for some applications

Processing issues

Good control of T, pressure & shear is essential

- Suitable screw (required shear & mixing efficiency)
- Temperature profiles and screw speeds
- Closed system
- Less or more compression
- Modifications on the matrix formulation
- Degree of fill

Matrix materials

Natural polymers	Synthetic polymers
Polysaccharides Starch&modified starches Cellulose&modified celluloses Chitosan Proteins Soy protein Wheat protein Collagen Gelatin Keratin Whey protein	Polylactide Polyglycolide Polylactide-co-glycolide Poly vinyl alcohol Polyvinyl acetate Polyethylene vinyl acetate Polyethylene glycol Polyethylene oxide

Formulation

- Biopolymers are advantageous:
 - Edible & Biodegradable
 - Usually biocompatible and well tolerated metabolizable
 - Large variety & range of properties
 - Large availability
 - Can be processed at lower temperatures
- Combination with synthetic polymers is an option for tailor made properties
- Processing aids & additives

Encapsulants

Compounds & organisms with or without a certain biological activity

- Numerous compounds & organisms: Vitamins, minerals, peptides, proteins, hormones, drugs, enzymes, essential oils, bacteria, yeast, algae, flavors, perfumes, detergents...
- Large variety of activities: Anti-microbial, anti-biotic, growth regulation, nutrition, pest control detergent...

Products

- Shaped articles
- Granules
- Pellets
- Powder
- Gels
- Sheet
- Latexes/nano-particles

Modifications

Matrix polymer(s)

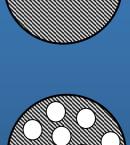
> Matrix properties (Physical, enzymatic, chemical modification)

Product properties

Processing variables

Encapsulant properties & loading

Processing aids & additives


Product Properties

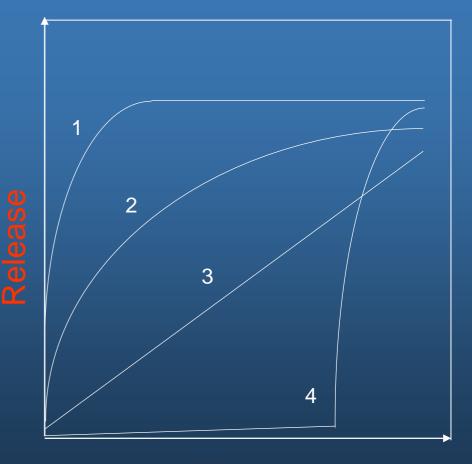
- Morphology
- Crystallinity
- Mechanical properties
- Density
- Release properties (mechanism, rate, profile, kinetics)

Morphology

- Single phase
 - Encapsulant dissolves in the matrix
- Two phase
 - Encapsulant is dispersed in the matrix
- Multiple phase
 - Two non-miscible matrix components
 - Encapsulant is dissolved or dispersed in one

Processing issues: Morphology

- For single phase
 Simple mixing
- For two/multiple phase
 - Very comparable with polymer blending
 - Dispersive and distributive mixing
 - Additives



Release properties

Abundant options:

 Burst release,
 First-order release,
 Zero-order release,
 Pulsed/Triggered release

controlled by diffusion, degradation or combination

Applications

- Food industry
- Pharmacy
- Non-food industries
 - Coatings/paints/inks
 - Agriculture
 - Textile
 - Plastics
 - Packaging
 - Household
 - Cosmetics & personal care
 - Waste water treatment

Applications in the food industry

- Food grade matrices (starch, proteins, fats..)
- Enhancement of taste
 - Mostly for flavors
 - Instant food products
 - Bakery
 - Low fat food
- Functional foods (vitamins, minerals, probiotics..)
- Taste masking (fish oils)
- Processing aid (salt, enzymes, bacteria)

Applications in the pharmacy

- Various types of matrices (synthetic and bio)
- For controlled or targeted delivery of biologically active compounds
 - Prescription medication
 - OTCs
 - Biomaterials (Implants)

Applications in the non food industries

- Various types of matrices (synthetic and bio)
- Processing aid
- Better compatibility of the actives
- Added functionality
- Controlled or targeted delivery of compounds

Packaging

Additional functionality; improvement of shelf life and/or quality, presentation

- Active packaging
 - Food products (difficult; legislation on migration)
 - Permeation control (scavengers, antioxidants, absorbents)
 - Encapsulated anti-microbial/fungal agents
 - Plants / cut flowers
 - Release of growth regulators
 - Disease elimination
 - Improved presentation with perfumes
- Indicator systems
- Marketing tool

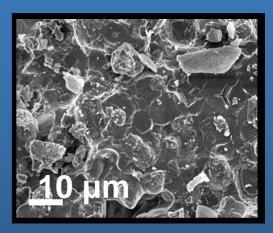
Agriculture

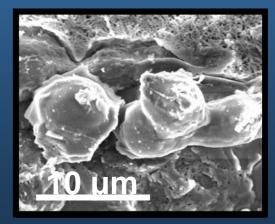
Focus on controlled release and agricultural films

- Release of biologically active compounds
 - Herbicides, pesticides, fertilizers...
- Influence of the biodegradability
 - Triggered biodegradation
 - Extension of the biodegradation
 - Soil enhancement
 - Soil disinfection

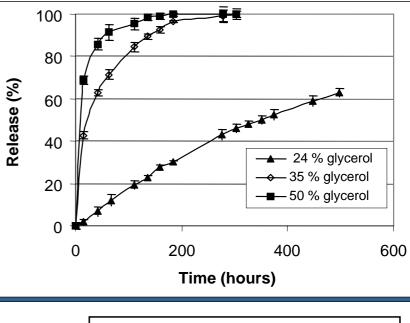
Other non food applications

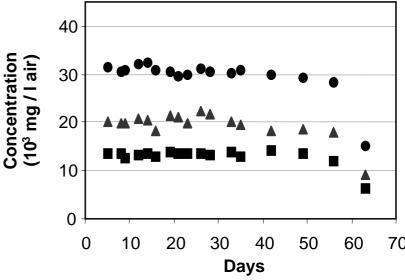
- Coatings/paints/inks
 - Self healing
 - Functional (antifungal, anti graffiti..)
 - Better adhesion/drying (curing agents)
- Textile
 - Added functionality (anti fungal, nice smell, cosmetic..)
- Plastics
 - Durability (controlled degradation, color stability, UV stability..)
 - Processing aid (catalysts, crosslinker, mold release agents..)
- Household
 - Long lasting effect (smell, pest control, antimicrobial)
 - Protected actives (longer shelf life)
- Cosmetics & Personal care
 - Vitamins, cosmeceuticals
 - CR effect
 - Tailored functionality (acne treatment, anti age, scar healing..)

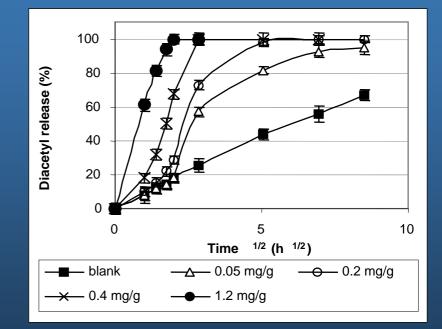



Intellectual property

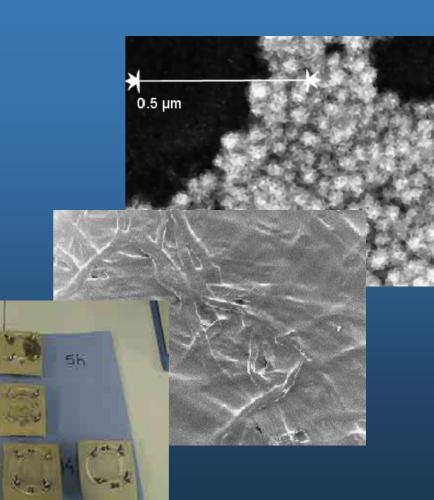
- Since 1950s
 - First patents emerge in the food industry (starch)
- Processing and product patents
- Usually by variation of the formulation


- Encapsulation of bioactive organisms (Lactic acid bacteria, bakers yeast, bifidobacteria)
- Processing at ambient temperature
- Survival ratio up to 97%
- Good stability first 2 weeks of storage
- Good stability at elevated temperatures




- Encapsulation and slow release system for a volatile compound
- Processing at ambient temperatures
- Multi component matrix system providing zero - order release of the active which can be extended for months

- Encapsulation and triggered release of biologically active compounds
- Triggered upon increase in the RH
- Extent of release can be controlled


- Encapsulated fertilizers formed into shaped articles
- Biodegradable pots
- Release occurs upon contact with water

Latex systems

- Colloidal stability in water
- Economically feasible production methods
- Tuneable water absorption and binding
- Barrier
- Protective
- Gloss
- Antimicrobial
- Responsive
- Self curing

Application examples

- Encapsulated active compounds for oral hygiene
- Stabilized flavors for food products
- Vitamin delivery
- Probiotics/prebiotics delivery
- Oral delivery of pharmaceutically active compounds for domestic animals
- Oral vaccination of animals
- Responsive antimicrobial packaging material
- Responsive freshness indicator
- Triggered fungicide release
- Protected colorants & dyes
- Fast drying ink

. . .

- Soil disinfecting foils
- Slow release agrochemicals

Concluding remarks

Encapsulation via extrusion technology enables

- Encapsulation of wide range of compounds
- Process flexibility
- Efficient and economically feasible processing
- Tailor made properties of the products

Future prospects

More complex formulations

- For site specific delivery
- Specific delivery patterns
- Combinations with chemical approaches in one step
 - Encapsulant-matrix
 - Matrix modification
- More products making it to the market especially for high volume applications
 - Agriculture
 - Household
 - Packaging
 - Coatings
 - Processing aids

Thank You!

