

Recycling Precious Metals Using Functionalised Silica Scavengers and Catalysts

RSC Symposium The Sustainability Challenge 19th June 2008

CPhI Innovation Ward Winner

David Astles CEO, PhosphonicS

Content summary

- PhosphonicS[™] overview
- Key industry issue: "the lost metal"
- The challenge for metal catalysis
- Solutions based on PhosphonicS[™] materials
 - Pharmaceutical Purification
 - Precious Metal recovery
 - Heterogeneous Catalysis

PhosphonicS[™] Overview

- Established 2003 to commercialise novel platform technology
- Expertise in ligand immobilisation onto inorganic supports and design of functionalised solid materials
- Located at Milton Science Park, Oxford, UK
- Portfolio of outstanding metal removal products, organic purification products and heterogeneous catalysts
- Screening, design and outsourcing services
- Assured supply from test kits to large bulk scale

PhosphonicS[™] Technology & Materials

Novel PhosphonicS[™] process to readily attach high performance ligands to surface of inorganic support

Opens up a world of novel materials

Phosphonic acid Sulfonic acid **Phosphates Amides Carboxylic acids Esters Aldehydes Ketones** Alcohols **Amines** Thiols **Sulfides Sulfones**

Amino acids **Phosphines** Heterocyclic amines **Nitriles Isocyanates** Sugars **Enzymes Polyamine Poly alcohols Amino Alcohols** Chiral compounds

designed to solve high value problems

Applications of Functionalised Solid Materials

Key industry issue – "the lost metal"

- Catalysts widely used in pharmaceutical and fine chemical processes, petrochemical and refining industry
- Broad range of precious and base metal catalysts used: homogeneous, heterogeneous, chiral, supported homogeneous
- Provide efficient and clean routes to high value products
- Objectives are maximum conversion and high selectivity ...

...but where does the metal go?

The product

Current Acceptable Metal Limits in Active Pharmaceutical Ingredients (APIs)

	Concentration (PPM)				
METAL	ORAL	PARENTERAL			
Pt, Pd, Ir, Rh, Ru, Os	5	0.5			
Mo, V, Ni, Cr	10	1			
Cu, Mn	15	1.5			
Zn, Fe	20	2			
SOURCE: European Agency for the Evaluation of Medicinal Products					

Metal must be removed from API product and intermediates
Toxicity concerns - permitted levels will continue to decline
Residual metal – problems in work-up & later reaction steps

Independent market survey: scale of metal removal problem from APIs

- > 50% of "small molecule" drugs in development use metal catalysed reactions
- Survey suggests up to 40% of these developments has a metal removal problem "not readily resolved"
- Existing techniques are not able to effectively deal with growing problems

The waste stream

Example: Catalyst Cost Contribution: 5% Rh on C ; 6% metal loss

- Significant effect on economics of metal loss
- At a time of rising metal prices and increased demand
- Environmental and economic need to recover valuable asset

The effluent stream

- Metals somehow find a way to effluent plant
- Once present, a major challenge to remove metals from complex, high volume streams
- Regulatory requirements to be met
- Significant costs in waste treatment on/off-site
- Includes PGMs, Cr, Cu, Fe, Ni, Hg, As
- Environmental pressure does the industry have control of its production processes?
 Increasing cost of regulatory compliance
 Industry wishes to demonstrate enhanced CSR profile

The challenge for metal catalysis

In summary:

- The (uncontrolled) loss of valuable/toxic metals
- The problems of removal and capture from product, waste and effluent streams
- The environmental, economic and societal consequences

The response:

- A need for improved catalysts and processes
- Better methods to capture and recover the metal
- Continued technology innovation required

PhosphonicS contribution

Product purification

Waste & Effluent

Metal Immobilisation

Novel metal scavengers

Liquid Metal Recovery Heterogeneous Catalysts

PhosphonicS[™] Metal Scavengers

Meeting the need to reduce residual metal levels in pharmaceuticals and fine chemicals

Step-change performance for Pd removal from APIs

Removing Metals from APIs : The Issues

- Need for a rapid, reliable, one-stop metal removal technology for all APIs
- Minimizing loss of API within environment of process intensification
- Regulatory assurance around all materials used in late synthetic steps
- Finding a solution which will scale economically from lab, through process, to plant

Adsorbents for Metal Removal from APIs

Adsorbent	Performance	API Recovery	Purity	Practical Issues	Material Cost
Charcoal	✓ Highly variable	✓ Loss 10 - 20%	\checkmark	Vessel contamination Multiple treatments High Temps	But large quantities consumed
MP-TMT	✓ ✓ Better at lower pH	$\checkmark \checkmark \checkmark$	$\checkmark\checkmark\checkmark$	Time dependence	\checkmark
PhosphonicS™ Metal Scavengers - Silicas	✓ ✓ ✓ OPRD, 2007 , <i>11</i> , 406	✓ ✓ ✓ Loss typically ~1%	√ √ √ ROI<0.05wt%	Rapid kinetics Lower Temps required	Scalable economics
Standard Silicas	✓ ✓ Limited functionality	$\checkmark \checkmark$	\checkmark	$\checkmark \checkmark \checkmark$	\checkmark
Grafted Fibres	✓	$\checkmark \checkmark \checkmark$	\checkmark	 ✓ ✓ High Temps req'd 	$\checkmark \checkmark$
PS-Resins	✓	√ √	\checkmark	Swelling Solvent compatible?	 ✓ _ ✓ ✓ Depends on grade/supplier

The Challenge – Winning the Tug of War

Multifunctional Metal Scavengers <u>designed</u> to compete and remove the metal from the API binding site

PhosphonicS[™] scavengers: fast removal of precious metal from solution

Pd Scavenging

Palladium chloride bis triphenyl phosphine in solution

Pd (II) Pd (0) complex complex

Metals removed to below 1 ppm in less than 30 seconds !
One scavenger removing both Pd(II) and Pd(0)

Broad Coverage of Problem Metals

Full range of PhosphonicS[™] Metal Scavengers designed to remove range of metals from highly functionalised substrates

PhosphonicS[™] Functionalised Silicas

- Performance : extremely high metal affinity across diverse range of APIs, with very high API recovery
- High purity : strictly no added impurities
- Track record : use on pilot and production scale by large pharmaceutical and fine chemical clients
- Speed : the route to a quick, first time solution
- Simple, scalable, cost-effective processes

Pharmaceutical Syntheses involving challenging Pd Removals

Org. Process Res. Dev., 2007, 11, 406

Sonogashira Reaction

Model substrate based on a calcium entry blocker

• Known to possess strong ability for chelation of palladium

Late stage Sonogashira reaction caused insurmountable Pd removal problems, necessitating reorganisation of the synthesis

Suzuki Reaction

Valsartan is a potent, orally active angiotensin II antagonist
Potential route into analogues employs a Suzuki coupling

After

1.6

<1

<1

Scalable Formats

- PhosphonicS[™] materials are normally applied:
- in powder (filtration) or syringe formats for small scale applications
- in powder, pre-packed cartridges (Metal SPE) or in packed vessels for process scale applications
- Cartridges developed to fit existing standard filter housings (pilot to manufacturing scale)

PhosphonicS[™] Liquid Metal Recovery

Extracting high value precious metals from waste streams

Liquid Metal Recovery - Background

- Precious metals (PM): wide range of applications in catalysts, electrochemicals, fuel cells, electronics ...
- PM recovery is essential for process economics
- Recovery of PM from solid wastes is well established
- Recovery of PMs from liquid wastes and process streams presents a technical challenge
- Conventional methods of recovery can be ineffective
 - Dilute solutions
 - Highly acidic environment
 - Organic / aggressive solvents

Catalysts: Precious Metal Recovery Cycle

Drivers – economic and environmental

- Economic need to remove these metals from high volume site effluent/waste streams streams
- Often an environmental or regulatory requirement
- Transport of liquid streams for metal recovery can be restricted or impossible
- Solutions containing low levels of PMs may not be cost effective to transport and treat
- Client confidentiality

What is PhosphonicS[™] Liquid Metal Recovery?

- Specially designed portfolio of cost-competitive metal scavengers
- Broad spectrum activity across range of precious metals
- Maximum metal capacity
- Designed for high volume flow environments
- Sized for easy packing and handling
- Easily processed by standard metal refining processes

How are they applied?

- Powder, cartridge formats or bag filters for smaller, batch applications
- Multi cartridge, bag filter or fixed bed for larger, process scale applications

Operational Advantages

- **High Affinity** for all common precious metals in different oxidation states.
- Fast acting highly active at ambient temperatures; scavenging accelerated at elevated temperature
- Effective in **dilute** and **concentrated** solutions
- High selectivity for the target metal
- Broad solvent and pH compatibility, in organic and aqueous systems
- Excellent stability thermal, physical, chemical, mechanical
- Wide operating parameters
- Used in variety of engineered formats (column, cartridge etc)
- Simple Metal Recycling efficient solid or liquid recovery

Metal Loading & Economics

Loading capacity: 20-100 g PM adsorbed per kg silica Economics depend on objectives, metal, concentration, treat rate, metal recovery process Total metal recovery achieved usually exceeds

conventional methods – "lost" metal captured

Benefits

- Recover Lost Metal Value for Minimal Capital Investment
- Minimise or Eliminate Waste Disposal Costs
- Meet **Discharge Targets** for heavy metals
- Enhance Corporate Social and Environmental Responsibility Policy

Application Examples

Current industrial applications include:

- ruthenium removal from electrochemical processing solutions
- rhodium removal from low concentration catalyst recycle streams
- selective gold removal from base metal streams
- platinum removal from reactive chemical process streams
- palladium recovery from chemical catalyst stream

Rhodium recovery: Case Study

Recovery of rhodium from an Oxo catalyst process stream

- Multi tonne scale
- Simple low-cost column design
- > 96% metal capture and > 3 w/w% loading achieved over just 1-2 cycles
- Fast capex payback

Platinum recovery: Case Study

Recovery of platinum from reactive halide stream

- Multi mt production scale
- High viscosity stream
- Reduction from ~ 50ppm to < 5ppm
- > 90% metal capture
- Highly selective mode of action
- Unique solution
- Potential savings > \$5m

Heterogeneous Catalysis

Using an Immobilised Metal to avoid metal leaching
 Using a solid phase to make catalysis easier and greener

Pd-Catalysed Cross-couplings, Metal-catalysed oxidations and Acid-catalysed reactions

Heterogeneous Phosphines & Metal Catalysts

Range of specialised phosphine ligands immobilised onto silica

Conversion to variety of heterogeneous Pd and Pt catalysts achieved

Offer clean cross-coupling reactions and catalyst recycling

Particle size, pore diameter and metal loading as required for application

Heterogeneous Pd Catalysts

- Palladium loading : 0.01 to 0.4 mmol/g
- Particle Size : 60-200 microns
- Pore Diameter : 60Å (SCRPd, SEM2Pd, SPM3Pd); 110Å (PAPd1r, PAPd2r)
- Variants : PdCl₂, PdCl₂(CH₃CN), PdCl₂(C₆H₅CN)
- Used for variety of common cross-coupling reactions in batch and flow

Suzuki & Heck Reactions

- 5 Recycles without any apparent loss of activity
- No apparent Pd black formation
- No apparent leaching based on hot filtration test
- Surface analysis (EDAX) indicates Pd surface unchanged after reaction

A. C. Sullivan et al., J. Mol. Cat. A: Chem., 2007, 273, 298

Suzuki Reactions : Phosphaadamantane Catalysts

* Performed in microwave

Heterogeneous Metal Oxidation Catalysts

Oxidation processes widely used in Discovery Chemistry

 Typical homogeneous reagents are difficult to handle, produce toxic waste and give contaminated products, difficult purifications & as a result generally low yields
 Uses environmentally-friendly re-oxidants

...immobilised metal gives a 'clean' and 'green' reaction

Heterogeneous Metal Oxidation Catalysts

Oxidation Catalyst	Code	Substrate	Product	Re-oxidant	Leading References
	POCo	Allylic/Benzylic CH ₂	Ketones	[#] BuOOH	<i>TL</i> , 2003 , <i>44</i> , 4283
		Allylic Alcohols	Enones		<i>TL</i> , 2004 , <i>45</i> , 4465
	POVO	Allylic Alcohols	Epoxides	[¢] BuOOH <i>or</i> NaBrO ₃ or	<i>TL</i> , 2004 , <i>45</i> , 4465
		Sulfides	Sulfoxides	H_2O_2	<i>TL</i> , 2006 , <i>47</i> , 8017
P O Mn(II)	POMn	Allylic/Benzylic CH ₂	Ketones	[#] BuOOH	Unpublished
0		1º Alcohols	Acids	NaBrO ₃	<i>TL</i> , 2003 , <i>44</i> , 769
	POCe	2º Alcohols	Ketones	or	
		Sulfides	Sulfoxides	[#] BuOOH	<i>TL</i> , 2005 , <i>4</i> 6, 4365
0 _0,				NaBrO ₃	
	POCr	Sulfides	Sulfoxides	or	Unpublished
				^t BuOOH	

Oxidation Catalysts Review: Chemistry Today, 2007, 25 (4), 22 & refs therein

Simple, scalable, cost effective processes

Heterogeneous Acid Catalysts

• Substitutes for strong acids, avoiding toxic, inorganic waste

- Easy-to-use acid catalysts for esterification, trans-esterification, hydrolysis, rearrangements, dehydration, protection & deprotection, cyclisations, etherifications, acylation & alkylation
- High thermal stability
- Readily recycled

Heterogeneous Acid Catalysts

• Effective catalysis of a full range of organic transformations...

Fatty Acid Esterifications

R'	R = ^{<i>n</i>} C ₈ H ₁₇ CH=CH- Yield/%	R = ^{<i>n</i>} C ₄ H ₉ - Yield/%
Ме	98	96
Et	97	94
ⁿ Pr	97	95
<i>'</i> Pr	49	na
ⁿ C ₈ H ₁₇	89	na
Bn	67	na

na = reaction not performed

- Enhanced yields *cf'd* to homogeneous acids & other heterogeneous catalysts
- Cleaner reactions

Acid Catalysts Review: Manufacturing Chemist, 2007, July/August Ed., 27

Heterogeneous Acid Catalysts

Developed as an alternative to AICl₃ for Friedel-Crafts reactions

• Also applied to Fischer indole synthesis

• Cleaner reactions, higher yields, fewer impurities

- Significant metal losses from catalytic processes
- Major economic and environmental impact
- Creates a challenge to resolve problems of metal removal and capture from product, waste and effluent streams
- Technology innovation required to deliver improved catalysts and better recovery methods
- PhosphonicS contribution:
 - developed enhanced scavengers for product purification and precious metal recovery
 - Immobilised heterogeneous metal catalysts

Thank you for your attention

