Organofunctional Siloxanes: The Best of Both Worlds

Dr Avril Surgenor Dow Corning Ltd

Chemsource 2006 Symposium 14th June 2006

Dow Corning . . . We Help You Invent The Future.[™]

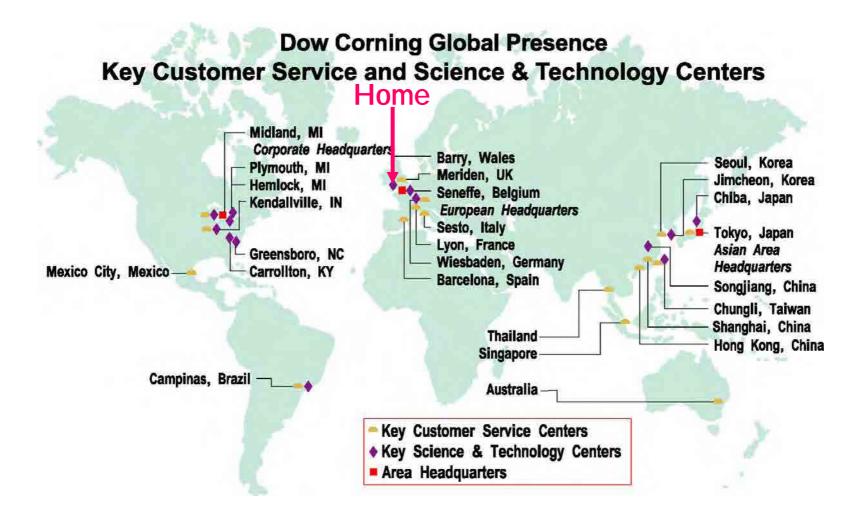
Outline of Presentation

- Overview of Dow Corning
- Brief History
- From Sand to Silicones
- Properties of Silicones
- Organofunctional Siloxanes
 - New developments

Dow Corning The Silicone Technology Pioneer

- A joint venture of The Dow Chemical Company and Corning, Inc.
- Organised to explore the potential of the silicon atom

Dow Corning and Silicones


- The market leader in the silicones industry
- More than 8,000 products and services
- More than 25,000 customers world-wide
- Sales of \$3.88 billion in 2005
 - 60% of the Sales outside the US
- Approximately 9,100 employees worldwide
- 4,500+ active patents globally

Dow Corning . . . We Help You Invent The Future.

тм

Dow Corning is Innovating around the World

Dow Corning . . . We Help You Invent The Future.[™]

History of Silicones

Silicone and silicone compounds do not occur naturally

- •Neolithic- flint, quartz, sand, granite
- •B.C.-sand+potash+minerals=glass
- •1771-Scheele makes first silicone compound, SiF₄
- •1811-Gay-Lussac & Thenard, isolate silicon metal
- •1828-Berzelius, Si metal

```
SiF<sub>4</sub>
SiCl<sub>4</sub>
```

•1846 Ebelman, Si(OEt)₄

The ability to make and isolate silicon metal was the key to making silicones

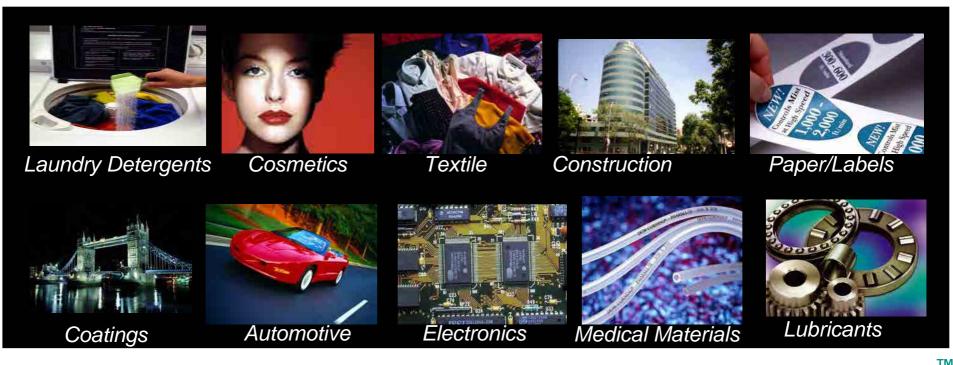
	History of Silicones
1857	Wohler, SiHCl ₃
	SiH ₄
	Introduced the term silicone R₂Si=O
	Analogue to Ketone R ₂ C=O
1863	Friedel and Crafts, SiEt ₄
1900	Grignard, RMgX
1900-1940	Kipping and Dilthey, R ₂ SiCl ₂
	Uninviting glues and oils

"The prospect of any immediate and important advance in this section of organic chemistry does not seem very hopeful"

1930-1950Hyde, Rochow, McGregorEstablished the basis for silicone technology

Silicones become a Commercial Reality

Dr. Eugene Rochow


- Direct process for the synthesis of chlorosilanes
 Production of methyl silicone
- •Silicone Rubber

Dr. Frank Hyde 1903-1999

- Design and control (polymerisation) of polymers containing silicon and oxygen chains
- Some of the first industrial applications of silicone fluids, gums and resins
 RTV sealants

Modern Day Uses of Silicon Compounds

Dow Corning's products are used by customers in virtually every major industry.

Dow Corning ... We Help You Invent The Future.

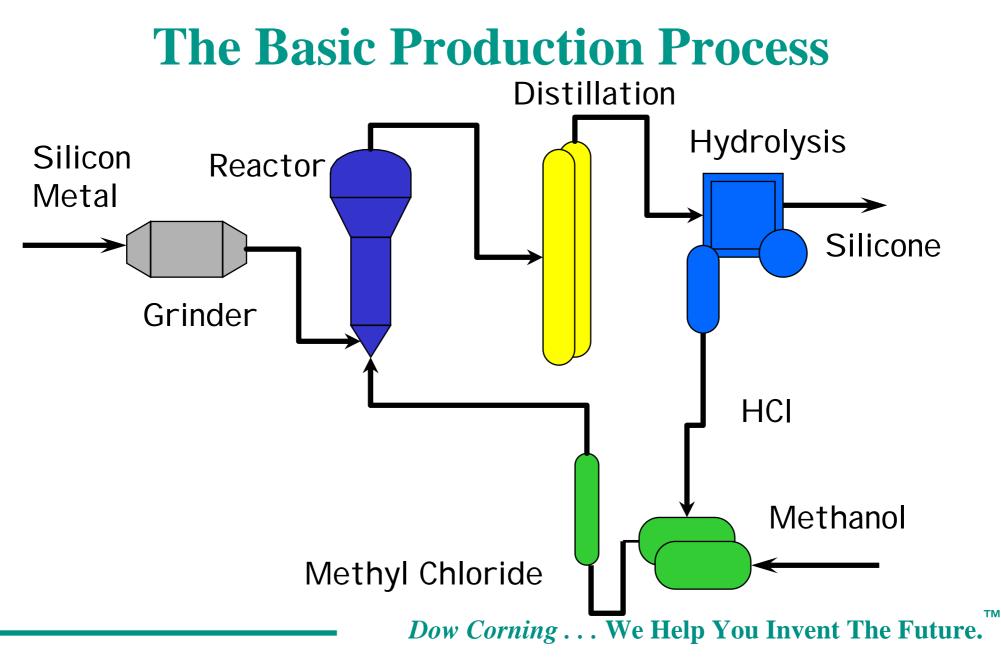
Silicon in Nature

- •Diatom Unicellular alga
- •Silica structures 50um wide
- •Produce gigatons of silica annually-3km³
- •Industry achieves only several billion kg of silicones annually

From Sand to Silicon

Overall Composition of the Earth: Iron-56 34.6% Oxygen-16 29.5% **Silicon-28 15.2%** Magnesium-24 12.7% Nickel-56 2.4% Sulphur -32 1.9%

Composition of the Earth's Crust: Oxygen - 46.6% Silicon 27.7% Aluminium 8.1% Iron 5.0%


Dow Corning . . . We Help You Invent The Future.[™]

From Sand to Silicon

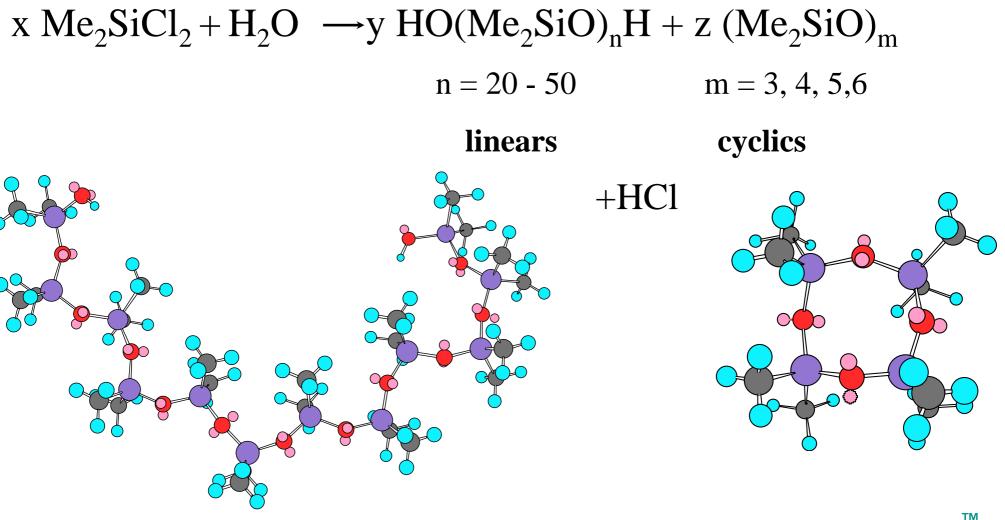
 Reduction of sand into silicon metal : SiO₂ + 2 C Si + 2 C
 Si + 2 CO
 Sand (silica) Carbon
 Silicon Carbon monoxide

• Hyper pure silicon $HSiCl_3 + H_2 \longrightarrow Si + 3HCl$

Dow Corning . . . We Help You Invent The Future.[™]

Dow Corning ... We Help You Invent The Future.

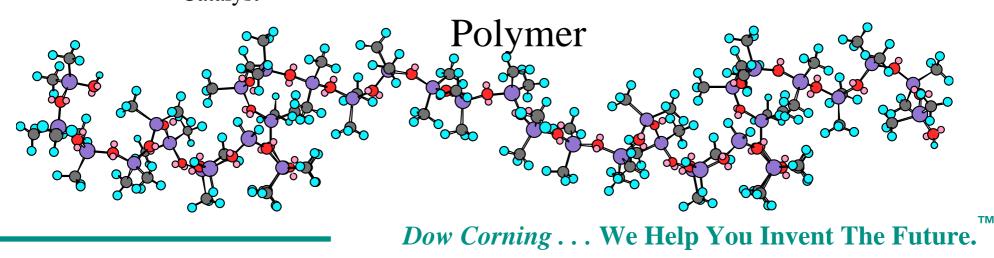
Chemsource 2006 Symposium

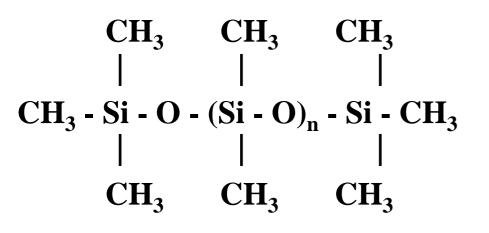

Direct Process (Mueller-Rochow Process)

MeSiCl₃ bpt: 66°C Cu Me₂SiCl₂ Si + 2 MeClbpt: 70°C Me₃SiCl 300°C bpt: 57°C

From Silicon to Silanes (Chlorosilane Production)

тм


Chlorosilane Hydrolysis


Dow Corning . . . We Help You Invent The Future.

Polymerisation

- Ring opening polymerisation/equilibration $Cyclics + Me_3SiOSiMe_3 \xrightarrow{Catalyst} Me_3SiO-(Me_2SiO)_n-SiMe_3$ endblocker Polymer
- Condensation polymerisation
- Linears \longrightarrow HOSiMe₂O-(Me₂SiO)_n-SiMe₂OH + H₂O

POLYDIMETHYLSILOXANES

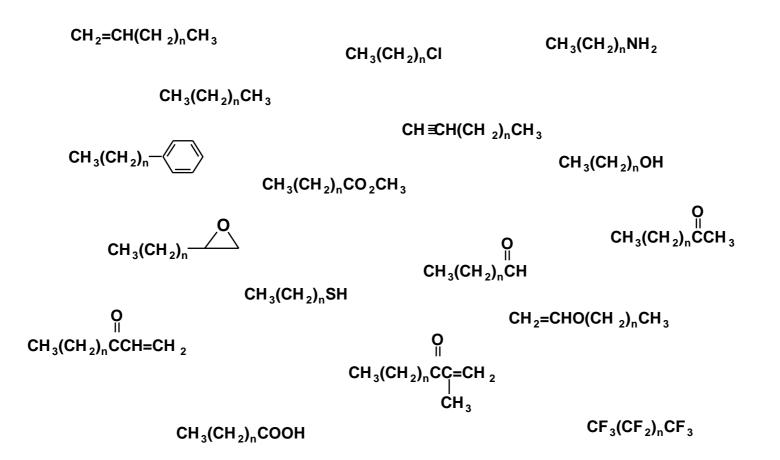
Chain has spiral shape

- Silicones typically have a back bone which is inorganic like glass
- The side groups are organic: in most case methyl
- The degree of polymerisation varies from n=0 to several thousand
- Silicones show low viscosity, even at very long chain lengths

n	Viscosity (cSt)
64	100
320	1000
730	10000
1570	60000

Dow Corning . . . We Help You Invent The Future.[™]

The Unique Properties of Silicones

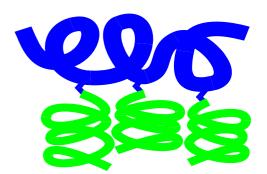

Molecular Characteristics	Physico-chemical Properties	Applications
 highly open, flexible and mobile siloxane backbone Si - O - Si - O - Si - O - high bond strength 435 kJmol⁻¹ Si-O (cf. 350 kJmol⁻¹ C-C) 	 low surface tension & energy high spreading and wetting capabilities permeable to gas and water vapour heat stability degradability compatibility with organics weather resistance 	 lubricant antifoaming release agent aesthetic feel (softness) comfort high temperature processing can be sterilised hydrophobic / hydrophilic breathable

Dow Corning . . . We Help You Invent The Future.

Why Organofunctional Silicones?

- Unique properties of silicone
 - flexible backbone, surface properties, UV/oxidative stability, etc.
- Compatibility with other fluids
- Reactivity with organics
 - physical (hydrogen bonding)
 - chemical
- Increased Deposition/Substantivity

The World of Organic Chemistry

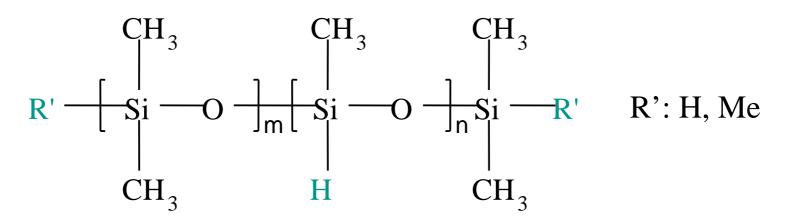

Dow Corning... We Help You Invent The Future.

TM

The Versatility of Siloxanes

ABA Block Copolymers

• Graft or "Rake" Copolymers

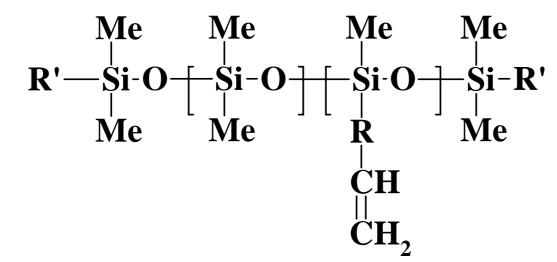


• Combination ABA/Graft

SOME EXAMPLES.....

Dow Corning . . . We Help You Invent The Future.[™]

Methyl Hydrogen Siloxanes


Properties

- Reactivity
 - Crosslinking *via* hydrosilylation
- Durability/substantivity

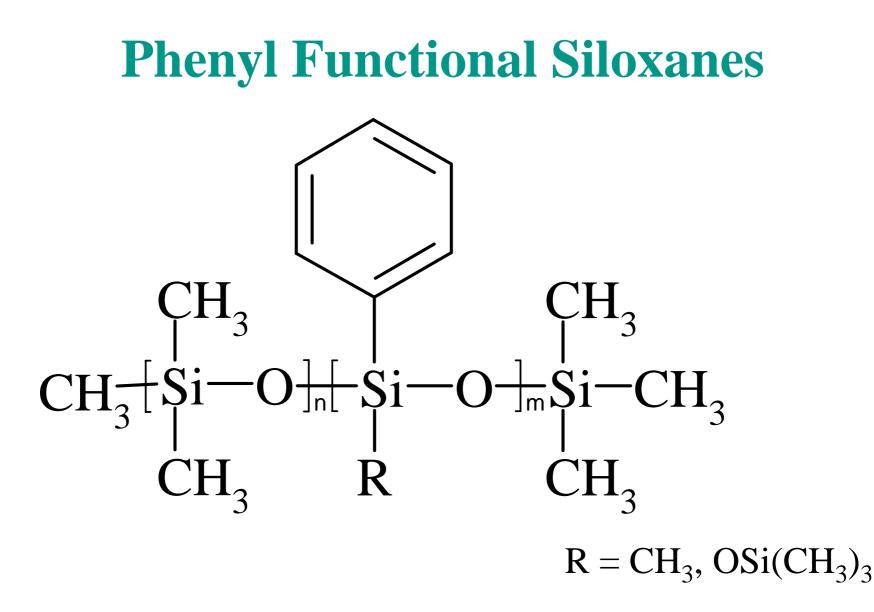
Applications

- •Elastomers/gels
- Coatings
- Waterproofing
- •Organofunctional siloxanes

Methyl Alkenyl Silicones

R: CH_2 , $(CH_2)_4$, R': Me, RCH= CH_2 , OH

Dow Corning . . . We Help You Invent The Future.[™]


Methyl Alkenyl Silicones

- Properties
 - Reactivity:
 - Crosslinking via free radical & hydrosilylation
- Applications
 - Elastomers/gels

Coatings

Dow Corning . . . We Help You Invent The Future.[™]

Phenyl-functional Siloxanes

PROPERTY/BENEFIT

- Good compatibility with organics
 / alcohol
- Durable water repellency
- Gloss
 - High refractive index
 - (RI = 1.46)
- Softness
- Manageability to hair
- Non oily, easy to spread

• Hair/skin care

APPLICATIONS

- Cosmetics
- Auto/home care

Fluoroalkyl-functional Siloxanes

$$\begin{array}{c|ccccc} CH_{3} & CH_{3} & CH_{3} & CH_{3} \\ | & | & | & | \\ CH_{3} - Si - O - (Si - O)_{x} - (Si - O)_{y} - Si - (CH_{2})_{n}C_{m}F_{2m+1} \\ CH_{3} & CH_{3} & CH_{3} \\ CH_{2})_{n}C_{m}F_{2m+1} \end{array}$$

Dow Corning . . . We Help You Invent The Future.[™]

Fluoroalkyl-functional Siloxanes

PROPERTY/BENEFIT

- Low surface tension
- Incompatibility with aqueous and non-aqueous media
- Aesthetics

APPLICATIONS

- Release
- Stain resistant and easy clean coatings
- Non-aqueous antifoams
 - crude oil
 - solvent borne coatings
- Coating special effects
 - hammer finish
- Oil resistant elastomers
 - auto parts
- Oil resistance/chemical resistance

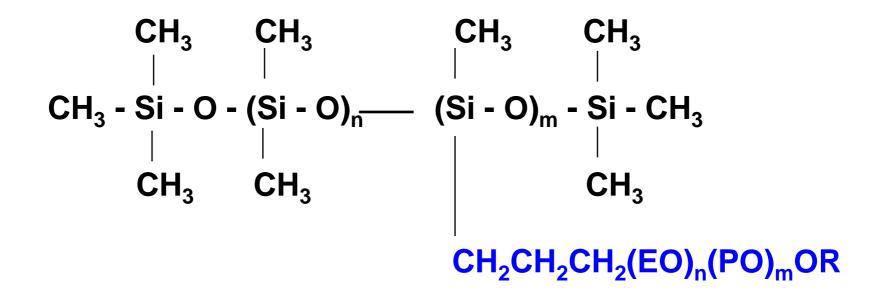
Alkylmethyl-functional Siloxanes

$$\begin{array}{c|ccccc} CH_{3} & CH_{3} & CH_{3} & CH_{3} \\ | & | & | & | \\ CH_{3} - Si - O - (Si - O)_{x} - (Si - O)_{y} - Si - CH_{2}(CH_{2})_{n}R \\ | & | & | & | \\ CH_{3} & CH_{3} & CH_{3} \\ \hline CH_{2}(CH_{2})_{n}R \end{array}$$

Dow Corning . . . We Help You Invent The Future.[™]

Alkylmethyl-functional Siloxanes

PROPERTY/BENEFIT


- Viscous fluid low m.pt. wax
 - Length of alkyl chain
- Improved compatibility with organics
- Controlled permeability
- Substantive
- Spreadable

APPLICATIONS

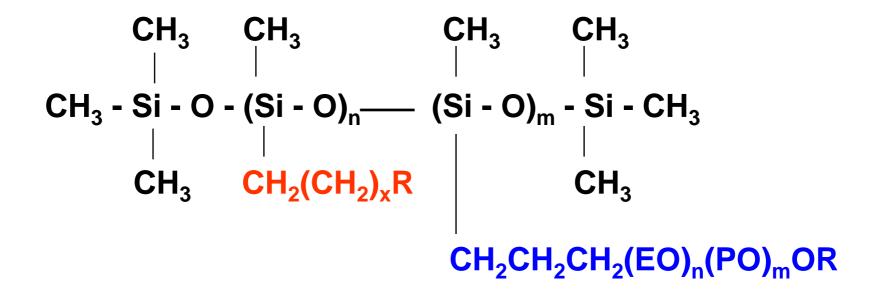
- Emulsion, formulation
- Skin care
- Shower gels
- Auto polish

Silicone Polyethers (SPEs)

 $\mathbf{R} = \mathbf{H}, \mathbf{Ac}$

Dow Corning . . . We Help You Invent The Future.[™]

Silicone Polyether Copolymers

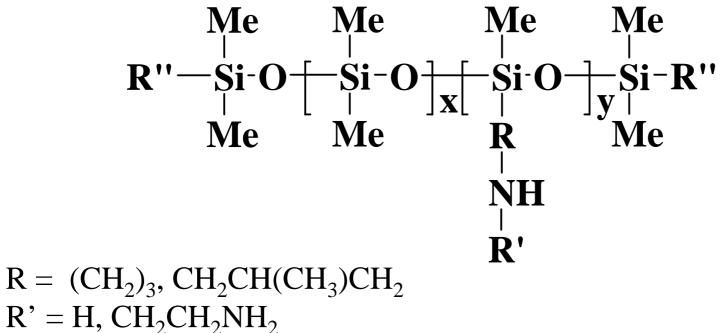

Foam Control in High Speed Printing

APPLICATIONS

- Water dispersible, formulated products, emulsions
- Hair/skin care
- Paint/ink additive
- Polyurethane foam additive
- Antifoam
- Thread lubricant

Alkylmethyl-co-polyether Siloxane Copolymers

Dow Corning . . . We Help You Invent The Future.[™]


Alkylmethyl-co-polyether Siloxane Copolymers

PROPERTY/BENEFIT	APPLICATIONS
• Stable W/O emulsions	• Emulsifier

- Moisturising & protective
- Non-greasy feel
- Spreadable
- High water content

- Facial care
- Hand & body creams & lotions

Amino Silicones

R'' = Me, RNHR'

Dow Corning . . . We Help You Invent The Future.[™]

Applications of Aminosiloxanes

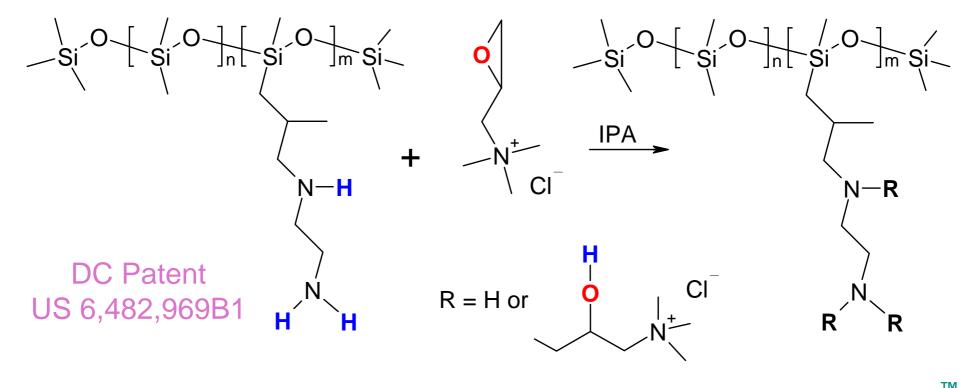
The feel-good factor for textiles

- Leather and textile fabric softeners for softening, water repellancy and stain resistance
- Nonwoven fabric treatments
- Fibre and thread lubrication
- Automotive safety air bag coatings

Applications of Aminosiloxanes

In the Home...

Hair


- Shampoor Stioners Itioners
 Cost Insturisers and Interparations
 Sue (face & bathroom)
 - Automatic washing powder
- Furniture polishes

Amino Derivatives: Quaternary Ammonium Salts

- Quaternaries in general are highly substantive to negatively charged surfaces (hair, textiles, *etc*).
- Polymeric quats should offer the benefit of even higher substantivity.
- Improved delivery of a low surface energy material (silicone) to a surface.
- Depending on the structure, quats can be made to impart:
 - conditioning, feel, body, slipperiness, hydrophobicity, hydrophilicity, *etc*.
 Dow Corning... We Help You Invent The Future.[™]

Quaternary Ammonium Functional Silicones

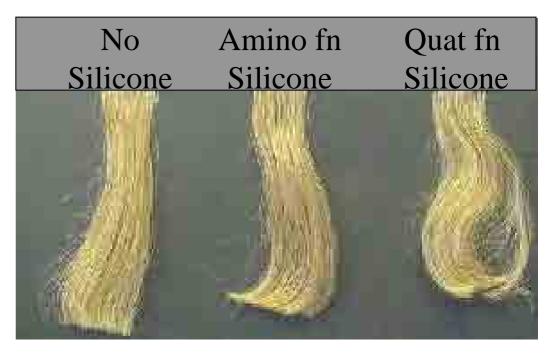
- Cationization of amine functional silicones with glycidyl trimethyl ammonium chloride (GTMAC).

Dow Corning ... We Help You Invent The Future.

Comparison of Amine Fluid and 'Quat Fluid'

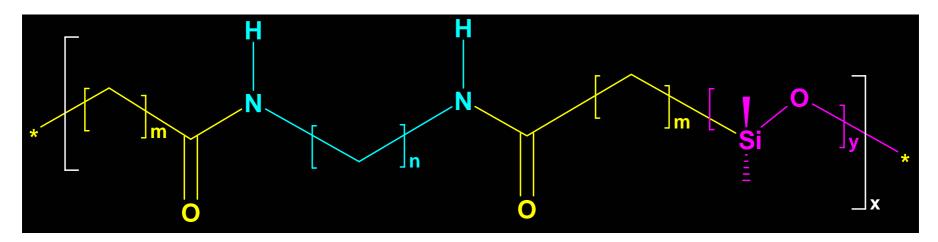
Amine Functional Fluid

Quat "Fluid"


Dow Corning . . . We Help You Invent The Future.[™]

Dow Corning® 5-7113 Silicone Quat Microemulsion

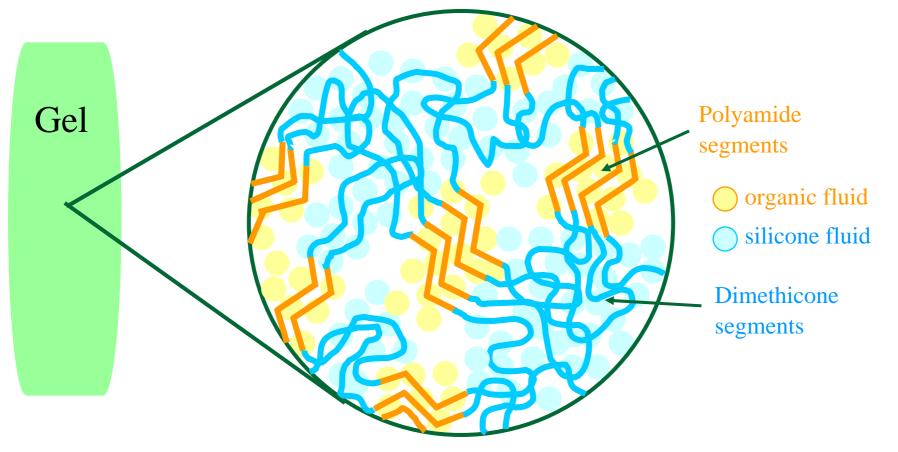
- Process Overview
 - Amino Inversion Emulsification
- Key Product Characteristics
 - Actives: 28% 7-6030 Polymer (25% Actives)
 - Appearance: Translucent to transparent
 - Particle size: < 20nm microemulsion</p>
 - Odor: Low (surfactant/amine)
 - Stability: Good heat-aged and shelf
- INCI Name: Silicone Quaternium-16 (and) Undeceth-11 (and) Butyloctanol (and) Undeceth-5


Multiple Benefits

- Heat Protection
- Hair Colour Protection
- Hair Body/Volume Enhancement
- Superior Conditioning
- Clear Formulations Possible

Dow Corning . . . We Help You Invent The Future.[™]

Amino Derivatives: Silicone Polyamide Dow Corning® 2-8178 Gellant



<u>Thicken or Structure</u> Silicone and Organics
Formulate soft gels to rigid solids
Formulate <u>clear or opaque</u> systems

•Can be used in <u>anhydrous or emulsion</u> systems.

Mixtures of 2-8178, silicone, and organic oil form Microphase Separation Gels

Association of the polar polyamide segments led to thickening and gellation when the mixture is cooled below the phase transition temperature (melting point)

Dow Corning ... We Help You Invent The Future.

ТМ

Summary

- Silicones combine many properties of organic and inorganic materials and are tremendously versatile
 - many forms from low viscosity liquids to elastomers or solids
 - may be delivered neat or as dispersions, blends, solids, gels, emulsions
- Structures may be modified to yield a range of organofunctional species
 - almost any organic group can be placed on a silicone or a silane
- They may be very inert or highly reactive, dependent on structure

Thank You for your Attention

Dow Corning . . . We Help You Invent The Future.[™]