Database searching using a similarity approach
* fingerprints in 2D and 3D
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Chemical data

+60,475,000 chemical substances Patents

« 3,488,108,873 nucleotide bases _ _ *European patents — 150,000,000
3,700,000 chemical reactions pages

613,000 available reagents 150,000 applications/year

Biological data

sover 800 organisms

25442 protein x-ray cry. ) . 400,000 chemical patent
has 600,000 reaction hvberstructures
12 million citations infiedline yp .
*Over 100 countries In patent
* 40 main stream datab EBI 0 organic x-ray structures ~ cooperation treaty (PCT)

*Ensemble : 24 million gene —_—
ton g «Combichem libraries of Billions of

compounds

The BIG ‘connection’ => innovation

This implies a clear need to make maximum use of this ‘sea’ of data...

Robert C. Glen and S. Aldridge.
Chem. Comm. 2002. pp2745-2747



® The grid
— Information and processing as accessible as
electricity — plug and play

® The semantic grid
— Language and knowledge to access the grid

Hardware grid

Semantic grid



® 100 years of chemistry — in books
e 20 years of data destruction — PDF

e Computational studies seldom available for
analysis and aggregation

* Need data to be abstracted to a computer
readable form

* Need data to be standardised and checked

* Need data to be available to ‘robots’ for
processing, checking, analysis — and to ‘talk’ to
other robots



e Uses CML, natural language processing,
knowledge of chemistry

* An authoring tool
e A data checker

e Data abstraction from chemistry papers ->
computer readable database

Experimental data checker: better information for organic chemists S. E. Adams,
, R. J. Kidd, A. D. McNaught, . F. R. Norton, J. A.
Townsend and C. A. Waudby Org. Biomol. Chem. 2004, 2, 3067-3070.
Highlighted in Chemical Science 2004, 1, C33.
Chemical documents: machine understanding and automated information
extraction J. A. Townsend, S. E. Adams, C. A. Waudby, V. K. de Souza,
Org. Biomol. Chem. 2004, 2, 3294-3200



Active
Compound

other
compounds

If the molecular descriptors
are valid ...

the activity of a Compound
Is shared by most other
compounds within its
Neighborhood Region

I.e. neighbors of a bioactive compound
have a higher probability of behaving in a
‘similar’ bioactive way

Molecular similarity: a key technique in molecular informatics. Organic
and Biomolecular Chemistry perspective article. R. C. Glen and A.
Bender, Org. Biomol. Chem. 2004, 2, 3204 - 3218.



e E.g. 6-aminoquinoline Start with interesting atom
find connections

Measured 5.7 find connections to connections
predicted 5.4 create a tree down to 5 levels
‘bin’ the atom types for each level
create a ‘fingerprint’ for this atom

N2 Level O

|
Car--Car Level 1

| |
Car,Car Car,H Level?2

String contains a bin for each required atom type at each level,
the number of atom types is accumulated to form the string - 56 bins



e Tabulate many reliable pKa
measurements

e Describe the environment around
lonizable centers

® Use partial least squares to create a
predictive model

® Test model with cross validation



56 bins used to cover all the possibilities

Used pls (partial least squares) to create a model
PK= pK® + Z ax; + Z gy, + £ g, ...

Used cross validation to validate the model

Novel methods for the prediction of pKa, logP and logD, Xing L. and
Glen R.C.. J. Chem. Inf. Comput. Sci.; 2002; 42(4); 796-805



pKa of acids pKa of bases
625 (412)

Predicted pK,
Predicted pK,

_ K
R2=0.98 Measured pK, Measured pK,  R2=0.99
Std.Err.=0.405 Std.Err.=0.302
N=625 N=412

Q2=0.92 02=0.95



e Surprisingly good results - fast
® Predictive for most pK’s

e Useful in biological setting in estimating
Pharmacokinetics, active species, metabolism etc.

® Predicts for all types - sometimes get odd results
though, If outside parameter set or the ‘atom
types’ are miss-set

* Applying method to other problems e.g. similarity

Novel methods for the prediction of pKa, logP and logD, Xing L. and Glen R.C.. J. Chem. Inf. Comput. Sci.;
2002; 42(4); 796-805

Predicting pKa by Molecular Tree Structured Fingerprints and PLS. Xing L.,Glen R. C. and Clark, R. D. J. Chem.
Inf. Comput. Sci. 2003, 43(3), 870



We created a descriptor suitable as a similarity index
by looking at all atoms in turn in a molecule and for
each atom, generating a depth-3 atom environment.
No hashing was involved. These are then binned into
an integer string - a ‘fingerprint’ for each atom centre

N2 Level O

|
Car--Car Level 1

Car,Car Car,H Level 2 etc.




* \We wish to select the important features.

®* To do this we calculate the entropy of the
data as a whole and for each class.

® This Is used to select those features with the
highest discrimination, e.g. active or inactive
or toxic and non-toxic molecules




® The next step Is to identify which
molecules belong to which class.

* To do this we use a Naive Bayesian
Classifer using the features (atom
environments) we have identified as being
Important.



* Include all selected features f; In
calculation of

P(CL, |F) _ P(CL,) y P(1; |CL))

P(CL, |F) P(CL, H P(1; |CL,)

e Ratio > 1: Class membership 1
e Ratio < 1: Class membership 2
e [ feature vector

e f.feature elements




* MDDR test run: 957 ligands from MDDR

— 49 5HT3 Receptor antagonists, 40
Angiotensin Converting Enzyme inhibitors
(ACE), 111 HMG-Co-Reductase inhibitors
(HMG), 134 PAF antagonists and 49
Thromboxane A2 antagonists (TXA2)

* A) Hit rate among ten nearest
neighbours for each molecule

* B) 20-fold Cross Validation, 5 Molecules
for query generation



Performance of the Atom Environment Approach, Selecting 20 Features

Group of Active Compounds 5HT3 ACE HMG PAF TXA2 Overall
Expecj[ed Hit Rate for Random 0.50 0.41 115 139 0.50 0.79
Selection

Hit Rate for this Method 5.82 5.85 8.33 7.29 6.47 6.75
Enrichment Factor 11.6 14.3 71.24 5.24 12.9 8.54
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e.g. ACE: We found about
80% of the active

molecules among the first
10% of the library




Combining data and search performance
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Briem and Lessel, Perspectives in Drug
Discovery and Design 2000, 20, 245-264.

Molecular Similarity Searching using Atom Environments, Information-Based Feature
Selection and a Naive Bayesian Classifier

Andreas Bender, Hamse Y. Mussa and Robert C. Glen, University of Cambridge
Stephan Reiling, Aventis Pharmaceuticals

J. Chem. Inf. Comp. Sci. , 2004; 44(1); 170-178



e 102,000 structures from the MDDR

e 11 Sets of Active Compounds, ranging in size from 349
to 1246 entries — large and diverse data set

® Performance Measure: Fraction of Active Structures
retrieved in Top 5% of sorted library

e Atom Environments were compared to Unity
Fingerprints in Combination with Data Fusion (MAX)
and Binary Kernel Discrimination

® |n case of Binary Kernel Discrimination and the Bayes
Classifier 10 actives and 100 inactives used for training

* Hert J, Willett P, Wilton DJ: Comparison of fingerprint-based methods for
virtual screening using multiple bioactive reference structures. J Chem Inf
Comput Sci 2004, 44:1177-1185.



O Unity Single

OAE Single

O Data-Fusion MAX

| OBKD,10a100i,k=100
B AE 10a100i

Similarity Searching of Chemical Databases Using Atom Environment Descriptors (MOLPRINT 2D):
Evaluation of Performance. Bender, A.; Mussa, H. Y.; Glen, R. C.; Reiling, S.J. Chem. Inf. Comput.
Sci.,2004; 44(5); 1708-1718.




e Two parts: Interaction fingerprint and
shape description; here results using
only interaction fingerprints are shown,
shape description under development

* Information was merged from multiple
molecules by using information-gain
feature selection and the Naive
Bayesian Classifier
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Interaction Energies at Surface

Points, one Probe at a time
Binning Scheme
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Step Program Parameters

used
Generation of 3D Concord
coordinates
Calculation of Surface msms Sphere radius, probe size,
Points triangulation density
Calculation of Interaction | GRID Probe (and various others)
Energies
Transformation of Perl script | Binning, number of bins,

Interaction energies into
descriptors

threshold levels




Average Hit Rate
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e MDDR Dataset (5HT3, ACE, HMG, PAF, TXA2)
e 10 Randomly selected compounds each

® 10 Conformations generated by GA search
with large window (10° for rigid 5HT3, 100°
for ACE, HMG, PAF, TXA2), giving diverse
conformations

® One force field optimized conformation
(Concord-generated) used to find other
conformations of the same molecule in whole
database of 937 structures, using Tanimoto
Coefficient



® 64% of conformations found at the top 10
positions -> 2/3 of compounds identified as
being most similar (among list of > 900
structures and 40-134 structures of same
active dataset)

® >90% of conformations found in Top 5% of
sorted database

® Conclusion: If molecules with the right
features are present in the database, they will
not be missed (in most cases) because they
are represented by a particular conformation



® Even If your classifier works, do the
selected features make serse?

e Set of active vs. Inactive molecules

* Information Gain calculated for each
feature, those which are much more
frequent among actives are “suspicious”
and might constitute the pharmacophore

® | ook at features from ACE, HMG and TXAZ2



Selected Features - HMG

® Binding Site: HMG + rigid lipophilic ring



HMG-15



HMG-19




Snake venom peptide analog with putative binding motif to angiotensin
used in early compound design (Cushman et al., Biochemistry
(1977), 16, 5484-5491.) — recent crystal structure available
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Yellow: lipophilic side chains

® Yamamoto et al., J. Med. Chem. 1993 (36) 820



TXA2- 7, and 44
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“Feature Hopping”
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Query (ACE inhibitor) used to screen
the database and the highest ranked
structures found (out of which all
except no. 6,7 and 10 are classified
as being ACE inhibitors in the MDDR
database). Five of the active
structures found (no. 3, 4, 5, 8 and 9)
were not found by any of the other
seven methods employed.

Molecular Surface Point Environments for Virtual Screening and the Elucidation of Binding
Patterns (MOLPRINT 3D). Bender, A.; Mussa, H. Y.; Gill, G. S.; Glen, R. C.
J. Med. Chem. 2004, 47(26), 6569-6583.




A competition to take 50,000 dihydrofolate reductase inhibitors of known activity
(Training Set) and to (blindly) predict the activity of 50,000 new compounds
(Test Set) in a high throughput screen.

32 groups took part. We obtained the ‘best’ results.

MOLPRINT 2D, was employed for virtual screening of £. coli dihydrofolate
reductase (DHFR) inhibitors.

Using an original training set of 49,995 compounds, enrichment factors
(between one and three) could be achieved on a test library, comprising
50,000 structures

We think that these results are poor. Reasons are described below.



Results



Data Set :

High-throughput screening of 49,995 compounds was performed by Zolli-Juran
et al., identifying 32 hits (defined by less than 75% residual activity in both of
two screening runs) comprising several novel scaffolds.

Objective:

The extraction of the structural ‘knowledge’ from the compounds and their
activities from the first screening (‘training set’) and to make predictions about
the inhibitory activities of a second set of 50,000 compounds that was to be
screened subsequently (42 ‘hits’ subsequently found in the ‘test set).

Our results show ca. 3 fold enrichment in the first 200 compounds ranked.
However, this reduced to just over one in the complete set — why ?






The ‘Test Set’ and the ‘Training
set’ contains chemically different
structures.

Therefore, the method does not
always recognise new features in
the new set as contributors to
activity.

We repeated the analysis by
randomizing the data and
predicting using cross validation.



Training and test set were pooled in a second step and randomly split into
training and test of equal size again, thus evening out the different
chemical characteristics of both libraries.

In a ten-fold cross validation study on the new training and test sets,
typically 10-fold enrichment could be found in the first 96 positions, 4-fold
enrichment in the first 384 positions and 3-fold enrichment in the first
1536 positions, corresponding to 6, 10 and 28 hits (out of a total of 307),
respectively.



Training and test set were pooled in a second step and randomly split into training
and test of equal size again, thus evening out the different chemical characteristics

of both libraries.

Inactives > 100%
activity, 200 Features

Hit Rates Enrichment Factors

First ... positions 96 384 1536 96 384 1536
Actives < 80% activity;
Inactives > 100% 2 4 10 3.4 1.7 1.1
activity, 200 Features
Ten-fold Random
Validation

. - 6.0 10.2 28.0 10.2 4.2 3.0

0

Actives <8S% activity, | vy | o | @0 | @2 | @wo | 03

‘Blind study’

after randomization note
big increase in success

In a ten-fold cross validation study on the new training and test sets, typically 10-fold enrichment could be
found in the first 96 positions, 4-fold enrichment in the first 384 positions and 3-fold enrichment in the first
1536 positions, corresponding to 6, 10 and 28 hits (out of a total of 307), respectively.

Conclusions :

On the one hand the work presented here shows that exact-fragment-matching similarity searching
methods are not capable of finding completely novel hit structures. Still, they are able to combine
knowledge from multiple active structures to give novel combinations of features, as shown previously. On
the other hand this work emphasizes the need for an even distribution of “chemistry” between the training
and the test set. ‘Lead hopping’, moving from one chemical space to another thus requires analysis based
on chemical descriptors (not the structural diagram), which is generally a much more compute intensive

calculation.



2D Method: Performs about as well as other 2D methods for
single molecule searches, outperforms them by a large margin
when combining information from multiple molecules

3D Method: TR Invariant, conformationally tolerant; combines
high enrichment factors with scaffold hopping — discovery of
new chemotypes

Features shown to correlate with binding patterns

Performance (at least in part) due to Bayesian Classifier, which
IS able to take multiple structures as well as active and inactive
Information into account

Chemically similar training and test sets required for 2D method



ﬂever the Royal Society of Chemistry, the
*Newton frust, the Department of Trade and
Industry, the EPSRC, the BBSRC.



