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1. Some examples of coping with Molecular informatics data
• legacy data (accuracy)

2. Database searching using a similarity approach
• fingerprints in 2D and 3D
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The scale of the data in Molecular The scale of the data in Molecular 
InformaticsInformatics……
Biological data

• 3,488,108,873 nucleotide bases

•over 800 organisms

•25442 protein x-ray crystal structures

•12 million citations in medline

• 40 main stream databases from EBI

•Ensemble : 24 million gene predictions

Chemical data
•60,475,000 chemical substances

•3,700,000 chemical reactions

•613,000 available reagents

•Bielstein has 600,000 reaction 
abstracts

•>270,000 organic x-ray structures

•Combichem libraries of Billions of 
compounds

Patents
•European patents – 150,000,000 
pages
•150,000 applications/year
•400,000 chemical patent 
hyperstructures
•Over 100 countries in patent 
cooperation treaty (PCT)

The BIG ‘connection’ => innovation

This implies a clear need to make maximum use of this ‘sea’ of data...

Robert C.  Glen and S. Aldridge.  Developing tools and standards in molecular informatics.
Chem. Comm. 2002. pp2745-2747



Enabling technologies…Enabling technologies…

•• The gridThe grid
–– Information and processing as accessible as Information and processing as accessible as 

electricity electricity –– plug and playplug and play

•• The semantic gridThe semantic grid
–– Language and knowledge to access the gridLanguage and knowledge to access the grid

Hardware grid

Semantic grid



Using information from Legacy dataUsing information from Legacy data
•• 100 years of chemistry 100 years of chemistry –– in booksin books
•• 20 years of data destruction 20 years of data destruction –– PDFPDF
•• Computational studies seldom available for Computational studies seldom available for 

analysis and aggregationanalysis and aggregation

•• Need data to be abstracted to a computer Need data to be abstracted to a computer 
readable formreadable form

•• Need data to be standardised and checkedNeed data to be standardised and checked
•• Need data to be available to ‘robots’ for Need data to be available to ‘robots’ for 

processing, checking, analysis processing, checking, analysis –– and to ‘talk’ to and to ‘talk’ to 
other robotsother robots



RSC/UCC RSC/UCC markupmarkup projectproject
•• Uses CML, natural language processing, Uses CML, natural language processing, 

knowledge of chemistryknowledge of chemistry
•• An authoring toolAn authoring tool
•• A data checkerA data checker
•• Data abstraction from chemistry papers Data abstraction from chemistry papers --> > 

computer readable databasecomputer readable database

Experimental data checker: better information for organic chemisExperimental data checker: better information for organic chemists S. E. Adams, ts S. E. Adams, 
J. M. GoodmanJ. M. Goodman, R. J. Kidd, A. D. , R. J. Kidd, A. D. McNaughtMcNaught, , P. MurrayP. Murray--RustRust, F. R. Norton, J. A. , F. R. Norton, J. A. 
Townsend and C. A. Townsend and C. A. WaudbyWaudby Org. Org. BiomolBiomol. Chem.. Chem. 2004, 2004, 22, 3067, 3067--3070.3070.
Highlighted in Highlighted in Chemical ScienceChemical Science 2004, 2004, 11, C33., C33.
Chemical documents: machine understanding and automated informatChemical documents: machine understanding and automated information ion 
extraction J. A. Townsend, S. E. Adams, C. A. extraction J. A. Townsend, S. E. Adams, C. A. WaudbyWaudby, V. K. de Souza, , V. K. de Souza, J. M. J. M. 
Goodman and P. MurrayGoodman and P. Murray--RustRust Org. Org. BiomolBiomol. Chem.. Chem. 2004, 2004, 22, 3294, 3294--32003200



Database searching Using a Database searching Using a 
similarity approachsimilarity approach

If the molecular descriptors
are valid ...

the activity of a Compound
is shared by most other
compounds within its
Neighborhood Region

i.e. neighbors of a bioactive compound 
have a higher probability of behaving in a
‘similar’ bioactive way

Active
Compound

Neighborhood
Region

other 
compounds

Molecular similarity: a key technique in molecular informatics. Organic 
and Biomolecular Chemistry perspective article. R. C. Glen and A. 
Bender, Org. Biomol. Chem. 2004, 2, 3204 - 3218.



The descriptors: Similar to the environment around an The descriptors: Similar to the environment around an 
ionizable center (atom environments) used previouslyionizable center (atom environments) used previously
(Xing, Clark and Glen)(Xing, Clark and Glen)

•• E.g. 6E.g. 6--aminoquinoline Start with interesting atom
find connections
find connections to connections
create a tree down to 5 levels
‘bin’ the atom types for each level
create a ‘fingerprint’ for this atom

aminoquinoline
Measured 5.7
predicted 5.4

Level 0

Level 1

Level 2

N2

Car--Car

Car,Car Car,H

String contains a bin for each required atom type at each level,
the number of atom types is accumulated to form the string - 56 bins

1 21 1



MethodMethod

•• Tabulate many reliable pKa Tabulate many reliable pKa 
measurementsmeasurements

•• Describe the environment around Describe the environment around 
ionizable centersionizable centers

•• Use partial least squares to create a Use partial least squares to create a 
predictive modelpredictive model

•• Test model with cross validationTest model with cross validation



Using the dataUsing the data
•• 56 bins used to cover all the possibilities56 bins used to cover all the possibilities
•• Used pls (partial least squares) to create a modelUsed pls (partial least squares) to create a model
•• pKpKaa= pK= pKcc

00 + + ΣΣ aaiixxii + + ΣΣ ggjjyyj j + + ΣΣ qqkkzzkk ......
•• Used cross validation to validate the modelUsed cross validation to validate the model
•• Novel methods for the prediction of pKa, logP and logD, Novel methods for the prediction of pKa, logP and logD, Xing L. and Xing L. and 

Glen R.C.. J. Chem. Inf. Comput. Sci.; Glen R.C.. J. Chem. Inf. Comput. Sci.; 20022002; 42(4); 796; 42(4); 796--805805

•• Recently refined model to improve accuracyRecently refined model to improve accuracy
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ConclusionsConclusions

•• Surprisingly good results Surprisingly good results -- fastfast
•• Predictive for most pK’sPredictive for most pK’s
•• Useful in biological setting in estimating Useful in biological setting in estimating 

Pharmacokinetics, active species, metabolism etc.Pharmacokinetics, active species, metabolism etc.
•• Predicts for all types Predicts for all types -- sometimes get odd results sometimes get odd results 

though, if outside parameter set or the ‘atom though, if outside parameter set or the ‘atom 
types’ are misstypes’ are miss--setset

•• Applying method to other problems e.g. similarityApplying method to other problems e.g. similarity

pKa test set
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Novel methods for the prediction of pKa, logP and logD, Xing L. and Glen R.C.. J. Chem. Inf. Comput. Sci.; 
2002; 42(4); 796-805

Predicting pKa by Molecular Tree Structured Fingerprints and PLS. Xing L.,Glen R. C. and Clark, R. D. J. Chem. 
Inf. Comput. Sci. 2003, 43(3), 870



Similarity searching in databases. Andreas BenderSimilarity searching in databases. Andreas Bender

1. Atom centred fingerprints1. Atom centred fingerprints
•• We created a descriptor suitable as a similarity index We created a descriptor suitable as a similarity index 

by looking at all atoms in turn in  a molecule and for by looking at all atoms in turn in  a molecule and for 
each atom, generating a deptheach atom, generating a depth--3 atom environment. 3 atom environment. 
No hashing was involved. These are then binned into No hashing was involved. These are then binned into 
an integer string an integer string -- a ‘fingerprint’ for each atom centrea ‘fingerprint’ for each atom centre

Level 0

Level 1

Level 2  etc.

N2

Car--Car

Car,Car Car,H



2. Information2. Information--Gain Gain 
Based Feature SelectionBased Feature Selection

•• We wish to select the important features.We wish to select the important features.
•• To do this we calculate the entropy of the To do this we calculate the entropy of the 

data as a whole and for each class.data as a whole and for each class.
•• This is used to select those features with the This is used to select those features with the 

highest discrimination, e.g. active or inactive highest discrimination, e.g. active or inactive 
or toxic and nonor toxic and non--toxic moleculestoxic molecules

ppS ∑−= 2log

v
v

v S
S

S
SI ∑−=



3. Classification3. Classification

•• The next step is to identify which The next step is to identify which 
molecules belong to which class.molecules belong to which class.

•• To do this we use a Naïve Bayesian To do this we use a Naïve Bayesian 
Classifer using the features (atom Classifer using the features (atom 
environments) we have identified as being environments) we have identified as being 
important.important.



3. Naïve Bayesian 3. Naïve Bayesian 
Classifier Classifier 
•• Include all selected features fInclude all selected features fii in in 

calculation ofcalculation of

•• Ratio > 1: Class membership 1Ratio > 1: Class membership 1
•• Ratio < 1: Class membership 2Ratio < 1: Class membership 2
•• F: feature vectorF: feature vector
•• ffi:i:feature elementsfeature elements
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MDDR MDDR –– lead discoverylead discovery
•• MDDR test run: 957 ligands from MDDRMDDR test run: 957 ligands from MDDR

–– 49 5HT3 Receptor antagonists, 40 49 5HT3 Receptor antagonists, 40 
Angiotensin Converting Enzyme inhibitors Angiotensin Converting Enzyme inhibitors 
(ACE), 111 (ACE), 111 HMGHMG--CoCo--ReductaseReductase inhibitors inhibitors 
(HMG), 134 (HMG), 134 PAF PAF antagonistsantagonists and 49 and 49 
ThromboxaneThromboxane A2 antagonists (TXA2)A2 antagonists (TXA2)

•• A) Hit rate among ten nearest A) Hit rate among ten nearest 
neighbours for each moleculeneighbours for each molecule

•• B) 20B) 20--fold Cross Validation, 5 Molecules fold Cross Validation, 5 Molecules 
for query generationfor query generation



MDDR database searchesMDDR database searches
Performance of the Atom Environment Approach, Selecting 20 Features 

Group of Active Compounds 5HT3 ACE HMG PAF TXA2 Overall 

Expected Hit Rate for Random 
Selection 0.50 0.41 1.15 1.39 0.50 0.79 

Hit Rate for this Method 5.82 5.85 8.33 7.29 6.47 6.75 

Enrichment Factor 11.6 14.3 7.24 5.24 12.9 8.54 
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Combining data and search performance Combining data and search performance 
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Briem and Lessel, Perspectives in Drug 
Discovery and Design 2000, 20, 245-264.

Molecular Similarity Searching using Atom Environments, Information-Based Feature
Selection and a Naïve Bayesian Classifier
Andreas Bender, Hamse Y. Mussa and Robert C. Glen, University of Cambridge
Stephan Reiling, Aventis Pharmaceuticals
J. Chem. Inf. Comp. Sci. , 2004; 44(1); 170-178



Comparison using Larger Data Comparison using Larger Data 
Set *Set *
•• 102,000 structures from the MDDR102,000 structures from the MDDR
•• 11 Sets of Active Compounds, ranging in size from 349 11 Sets of Active Compounds, ranging in size from 349 

to 1246 entries to 1246 entries –– large and diverse data setlarge and diverse data set
•• Performance Measure: Fraction of Active Structures Performance Measure: Fraction of Active Structures 

retrieved in Top 5% of sorted libraryretrieved in Top 5% of sorted library
•• Atom Environments were compared to Unity Atom Environments were compared to Unity 

Fingerprints in Combination with Data Fusion (MAX) Fingerprints in Combination with Data Fusion (MAX) 
and Binary Kernel Discriminationand Binary Kernel Discrimination

•• In case of Binary Kernel Discrimination and the Bayes In case of Binary Kernel Discrimination and the Bayes 
Classifier 10 actives and 100 inactives used for trainingClassifier 10 actives and 100 inactives used for training

* Hert J, Willett P, Wilton DJ: Comparison of fingerprint-based methods for 
virtual screening using multiple bioactive reference structures. J Chem Inf
Comput Sci 2004, 44:1177-1185.



Comparison of MethodsComparison of Methods
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Similarity Searching of Chemical Databases Using Atom Environment Descriptors (MOLPRINT 2D): 
Evaluation of Performance. Bender, A.; Mussa, H. Y.; Glen, R. C.; Reiling, S.J. Chem. Inf. Comput. 
Sci.,2004; 44(5); 1708-1718.



Transformation to 3DTransformation to 3D
•• Two parts: Interaction fingerprint and Two parts: Interaction fingerprint and 

shape description; here results using shape description; here results using 
only interaction fingerprints are shown, only interaction fingerprints are shown, 
shape description under developmentshape description under development

•• Information was merged from multiple Information was merged from multiple 
molecules by using informationmolecules by using information--gain gain 
feature selection and the Naïve feature selection and the Naïve 
Bayesian ClassifierBayesian Classifier



3D: Environment around a surface 3D: Environment around a surface 
point: solvent accessible surfacepoint: solvent accessible surface

Central Point 
(“Layer 0”)

Points in 
Layer 1

Points in Points in 
Layer 2Layer 2

Etc.



AlgorithmAlgorithm
Interaction Energies at Surface 

Points, one Probe at a time

-0.35 EU

Binning Scheme
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Surface Point Environment
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Algorithm FlowAlgorithm Flow
StepStep Program Program 

usedused
ParametersParameters

Generation of 3D Generation of 3D 
coordinatescoordinates

ConcordConcord

Calculation of Surface Calculation of Surface 
PointsPoints

msmsmsms Sphere radius, probe size, Sphere radius, probe size, 
triangulation densitytriangulation density

Calculation of Interaction Calculation of Interaction 
EnergiesEnergies

GRIDGRID Probe (and various others)Probe (and various others)

Transformation of Transformation of 
interaction energies into interaction energies into 
descriptorsdescriptors

Perl scriptPerl script Binning, number of bins, Binning, number of bins, 
threshold levelsthreshold levels



Surface Environments Surface Environments –– comparison comparison 
with 2D and other methodswith 2D and other methods
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Conformational VarianceConformational Variance
•• MDDR Dataset (5HT3, ACE, HMG, PAF, TXA2)MDDR Dataset (5HT3, ACE, HMG, PAF, TXA2)
•• 10 Randomly selected compounds each10 Randomly selected compounds each
•• 10 Conformations generated by GA search 10 Conformations generated by GA search 

with large window (10with large window (10°° for rigid 5HT3, 100for rigid 5HT3, 100°°
for ACE, HMG, PAF, TXA2), giving diverse for ACE, HMG, PAF, TXA2), giving diverse 
conformationsconformations

•• One force field optimized conformation One force field optimized conformation 
(Concord(Concord--generated) used to find other generated) used to find other 
conformations of the same molecule in whole conformations of the same molecule in whole 
database of 937 structures, using Tanimoto database of 937 structures, using Tanimoto 
CoefficientCoefficient



Overall findingsOverall findings
•• 64% of conformations found at the top 10 64% of conformations found at the top 10 

positions positions --> 2/3 of compounds identified as > 2/3 of compounds identified as 
being most similar (among list of > 900 being most similar (among list of > 900 
structures and 40structures and 40--134 structures of same 134 structures of same 
active dataset)active dataset)

•• >90% of conformations found in Top 5% of >90% of conformations found in Top 5% of 
sorted databasesorted database

•• Conclusion: If molecules with the right Conclusion: If molecules with the right 
features are present in the database, they will features are present in the database, they will 
not be missed (in most cases) because they not be missed (in most cases) because they 
are represented by a particular conformation are represented by a particular conformation 



Which features are selected for Which features are selected for 
classification?classification?
•• Even if your classifier works, do the Even if your classifier works, do the 

selected features make selected features make sensesense??
•• Set of active vs. inactive moleculesSet of active vs. inactive molecules
•• Information Gain calculated for each Information Gain calculated for each 

feature, those which are much more feature, those which are much more 
frequent among actives are “suspicious” frequent among actives are “suspicious” 
and might constitute the pharmacophoreand might constitute the pharmacophore

•• Look at features from ACE, HMG and TXA2Look at features from ACE, HMG and TXA2



Selected Features Selected Features -- HMGHMG

•• Binding Site: HMG + rigid lipophilic ringBinding Site: HMG + rigid lipophilic ring



HMGHMG--1515



HMGHMG--1919



ACE ACE –– Binding SiteBinding Site
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(1977), 16, 5484(1977), 16, 5484--5491.) 5491.) –– recent crystal structure availablerecent crystal structure available



Selected Features Selected Features –– ACEACE--3131
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TXA2TXA2

Yellow: lipophilic side chains

•• Yamamoto et al., J. Med. Chem. 1993 (36) 820Yamamoto et al., J. Med. Chem. 1993 (36) 820



TXA2TXA2-- 7, and 447, and 44



““Feature Hopping”Feature Hopping”
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Query (ACE inhibitor) used to screen 
the database and the highest ranked 
structures found (out of which all 
except no. 6,7 and 10 are classified 
as being ACE inhibitors in the MDDR 
database). Five of the active 
structures found (no. 3, 4, 5, 8 and 9) 
were not found by any of the other 
seven methods employed.

Molecular Surface Point Environments for Virtual Screening and the Elucidation of Binding 
Patterns (MOLPRINT 3D). Bender, A.; Mussa, H. Y.; Gill, G. S.; Glen, R. C. 
J. Med. Chem. 2004, 47(26), 6569-6583. 



HTS Data Mining and Docking Competition 2005 
at McMaster University (Ontario)

A competition to take 50,000 dihydrofolate reductase inhibitors of known activity
(Training Set) and to (blindly) predict the activity of 50,000 new compounds 
(Test Set) in a high throughput screen.

32 groups took part. We obtained the ‘best’ results.

MOLPRINT 2D, was employed for virtual screening of E. coli dihydrofolate
reductase (DHFR) inhibitors.
Using an original training set of 49,995 compounds, enrichment factors 
(between one and three) could be achieved on a test library, comprising 
50,000 structures

We think that these results are poor. Reasons are described below.



Results

MolPrint2D



Data Set :
High-throughput screening of 49,995 compounds was performed by Zolli-Juran
et al., identifying 32 hits (defined by less than 75% residual activity in both of 
two screening runs) comprising several novel scaffolds.
Objective:
The extraction of the structural ‘knowledge’ from the compounds and their 
activities from the first screening (‘training set’) and to make predictions about 
the inhibitory activities of a second set of 50,000 compounds that was to be 
screened subsequently (42 ‘hits’ subsequently found in the ‘test set).

Our results show ca. 3 fold enrichment in the first 200 compounds ranked. 
However, this reduced to just over one in the complete set – why ?





The ‘Test Set’ and the ‘Training 
set’ contains chemically different 
structures.
Therefore, the method does not 
always recognise new features in 
the new set as contributors to 
activity.

We repeated the analysis by 
randomizing the data and 
predicting using cross validation.



Training and test set were pooled in a second step and randomly split into 
training and test of equal size again, thus evening out the different 
chemical characteristics of both libraries. 

In a ten-fold cross validation study on the new training and test sets, 
typically 10-fold enrichment could be found in the first 96 positions, 4-fold 
enrichment in the first 384 positions and 3-fold enrichment in the first 
1536 positions, corresponding to 6, 10 and 28 hits (out of a total of 307), 
respectively.



Training and test set were pooled in a second step and randomly split into training 
and test of equal size again, thus evening out the different chemical characteristics 
of both libraries. 

Hit Rates Enrichment Factors

First … positions 96 384 1536 96 384 1536

Actives < 80% activity; 
Inactives > 100% 
activity, 200 Features

2 4 10 3.4 1.7 1.1

Ten-fold Random 
Validation
Actives < 85% activity, 
Inactives > 100% 
activity, 200 Features

6.0 
(0.7)

10.2 
(2.4)

28.0 
(3.0)

10.2 
(1.2)

4.2 
(1.0)

3.0 
(0.3)

‘Blind study’

after randomization note 
big increase in success

In a ten-fold cross validation study on the new training and test sets, typically 10-fold enrichment could be 
found in the first 96 positions, 4-fold enrichment in the first 384 positions and 3-fold enrichment in the first 
1536 positions, corresponding to 6, 10 and 28 hits (out of a total of 307), respectively.
Conclusions :
On the one hand the work presented here shows that exact-fragment-matching similarity searching 
methods are not capable of finding completely novel hit structures. Still, they are able to combine 
knowledge from multiple active structures to give novel combinations of features, as shown previously. On 
the other hand this work emphasizes the need for an even distribution of “chemistry” between the training 
and the test set. ‘Lead hopping’, moving from one chemical space to another thus requires analysis based 
on chemical descriptors (not the structural diagram), which is generally a much more compute intensive 
calculation.



SummarySummary
•• 2D Method: Performs about as well as other 2D methods for 2D Method: Performs about as well as other 2D methods for 

single molecule searches, outperforms them by a large margin single molecule searches, outperforms them by a large margin 
when combining information from multiple molecules when combining information from multiple molecules 

•• 3D Method: TR invariant, conformationally tolerant; combines 3D Method: TR invariant, conformationally tolerant; combines 
high enrichment factors with scaffold hopping high enrichment factors with scaffold hopping –– discovery of discovery of 
new new chemotypeschemotypes

•• Features shown to correlate with binding patternsFeatures shown to correlate with binding patterns
•• Performance (at least in part) due to Bayesian Classifier, whichPerformance (at least in part) due to Bayesian Classifier, which

is able to take multiple structures as well as active is able to take multiple structures as well as active andand inactive inactive 
information into accountinformation into account

•• Chemically similar training and test sets required for 2D methodChemically similar training and test sets required for 2D method
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