

Continuous Flow Technology: Is the Batch Process Dead?

Lonzd

Growth of Continuous Flow Technologies in Pharma

Dominique M. Roberge / Lonza AG / 16 June 2011

Our extensive know-how and offering have evolved to meet customer needs

Financially Stable / Global Footprint

- CHF 2.7 billion (2009 sales)
- 27 facilities; 8,300 employees

Focused on Life Sciences

- Bioresearch
- Pharma & Biotech
- Nutrition
- Personal Care

Global leader in custom manufacturing

- Chemical and biological APIs, cell therapy
- Lead optimization through market supply

- Agriculture
- Materials Science

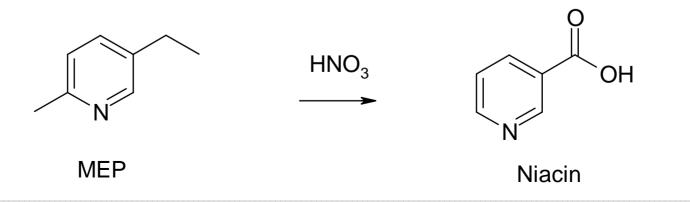
Our Visp, Switzerland site is home to numerous cutting-edge technologies

Location

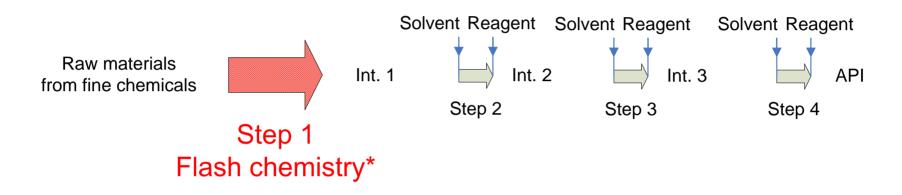
- 150km east of Geneva
- Footprint: 90 hectares

Fine Chemistry in Visp

- Cracker for C2 supply
- Continuously operating production (e.g. Niacin)
- R&D, process development, small-scale production, and fine chemical complex FCC for pharma production
- Large fermentation units


Some key technologies

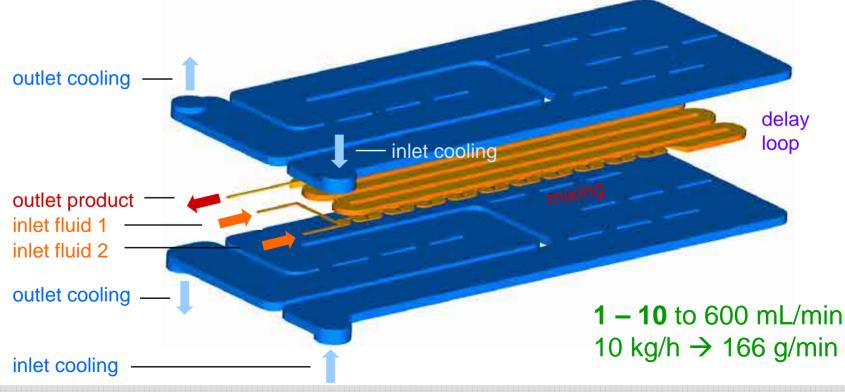
- Large-Scale (10m³; total over 400m³)
- cGMP phosgene plant
- cGMP Continuous Ozonolysis


Lonza Niacin

- Continuous process from feed preparation to packaging
- Manufactured under cGMP conditions
- One dedicated facility in Visp, Switzerland

Re-design the Chemical Routes with the Concept of Flash Chemistry in Flow

Flow Processes / Microreactors lead to drastic improvements

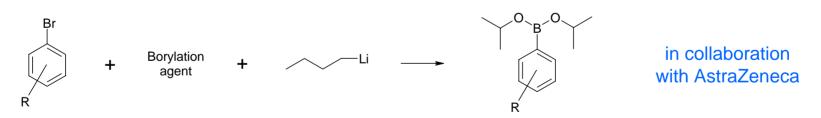

- Excellent heat transfer & mixing
- Exact control of residence time
- Segregation of feeds, small volume, robust (pressure) etc.

Inherently Safer Design from the high level of confinement

= Intensified Mini-Plant Concept

Microreactors are at the heart of a dramatic shift in API production

It enables **continuous processes** based on plug flow reactors with **minimal volume** of reagents, **rapid dynamic responses** and robustness, **good temperature control**, **efficient mixing**, etc.



Example 1: Control of Organometallic Reactions based on HexLi/BuLi

3-Feeds setup via 2 reactions in series

2-Feeds setup via 1 single reaction (In Situ Quench Method)

- Exact control of residence time: Li intermediates are short-living = s to m reactions
- Perfect control of micro-mixing: Bromo compound reacts faster than the quench reagent (borylation agent) = ms reactions

Lonza FlowPlate[™] Reactor to Control Reaction Heat

2-Step Synthesis: Lithiation and Coupling

Some Disadvantages

 Plugging = Lonza patent applied Ultrasonic Deplugging System First reaction: Type A, highly exothermic ($\Delta T_{ad} > 75^{\circ}C$)

Microreactor

Second reaction: Type B, exothermic ($\Delta T_{ad} < 25^{\circ}C$)


 Use of a static mixer under adiabatic conditions

Microreactor Technology Leads to Dramatic Process Intensifications

Process intensification to enable inherently safer processes leading to a production paradigm

- Lower reactor investment
- Less manpower
- Higher flexibility
- Enhance safety
- Faster change-over

"Factory of the Future"

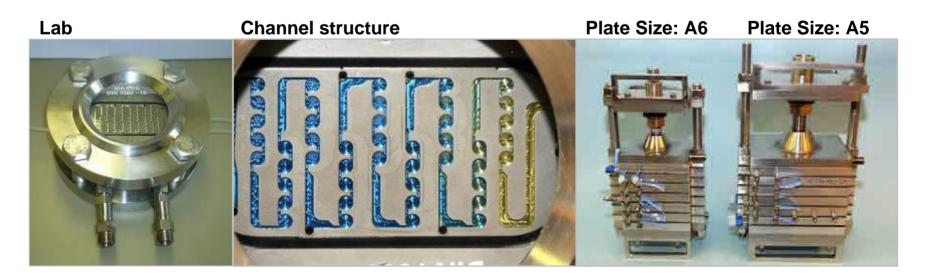


Pilot Plant Microreactor Technology

Key Features

- Multi-purpose system
 - Modular
 - Hastelloy
 - T = -80 to +180°C
- ATEX standards
- Qualifiable for cGMP production
- 3 dosage lines
 - 1 6 bar
 - 5 300 g/min (per line)

- Track record
 - Organolithium exchange
 - Organolithium coupling
 - Nitration reactions


Lonza FlowPlate[™] Reactors

Development Reactor

- View the chemistry
- Reaction at tiny flow rates
- Test different channel geometries

Production Reactor

- Design as key ingredient to scale-up
- Avoids total parallelization
- Multi-purpose and modular

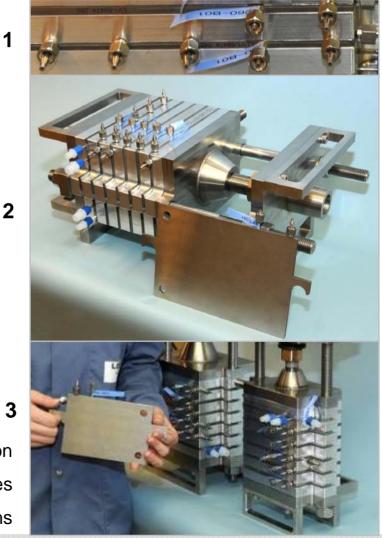
Please visit the reactors at booth H.18

Lonza MicroReactor as Universal Modules

Equipment Features

- Modular, robust, over 100 bar
- Hastelloy plates: process fluid
- Aluminum plates: thermal fluid
- Compactness, easy to adapt
- Each plate = one specific design

3


1

1 Plate for multi-injection 2 Reactor system with 6 plates

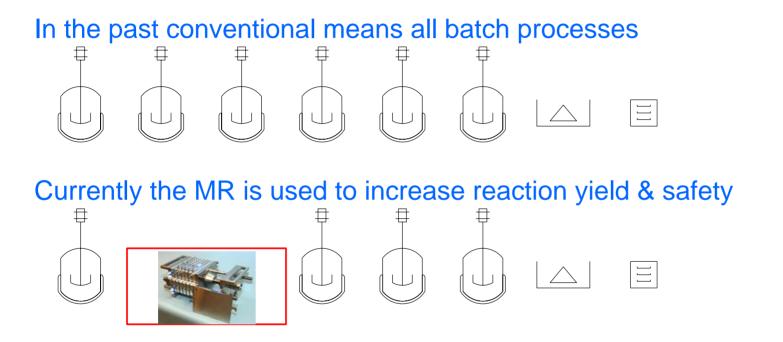
3 A6 and A5 reactor systems

Lonza

Please visit the reactors at booth H.18

Scale-up Concept with MicroReactor in Plant

LabPlate		A4
Laboratory System MicroReactors & conventional technology	Small-Scale MicroReactors & conventional technology, cGMP, EX environment	Large-Scale MicroReactors & conventional technology, cGMP, EX environment
1-30 g/min sample production	15-300 g/min 2-10 kg campaigns 300-600 g/min 0.1-2 t campaigns	0.6- 5 kg/min 50 t + campaigns
Pre-clinical phase Process research Process development	Phase 1, 2, 3	Commercial Products

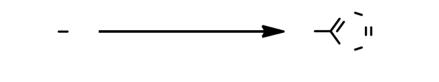

slide 13

Lonza Ultrasonic De-plugging System

- Optimize to use with Lonza MicroReactors
- Ultrasonic System to enable stable operations over days / weeks
- Imperative when working with organometallic like BuLi / Grignard
- Ultrasound is generated in the liquid → to create true cavitation
- Optimal for spot plugging like in the mixing zone or exit

The Future of Flow Processes: Full Integration of MRT in Production Units

Future will lead to fully integrated flow processes: MR and more...



Example 2: Azide Chemistry In Microreactors

Azide-Nitrile Addition to make Tetrazole Derivatives

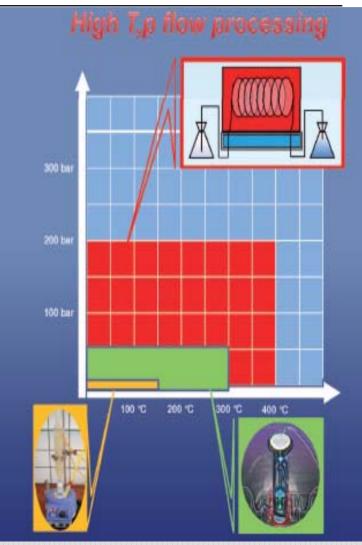
additi

slide 16

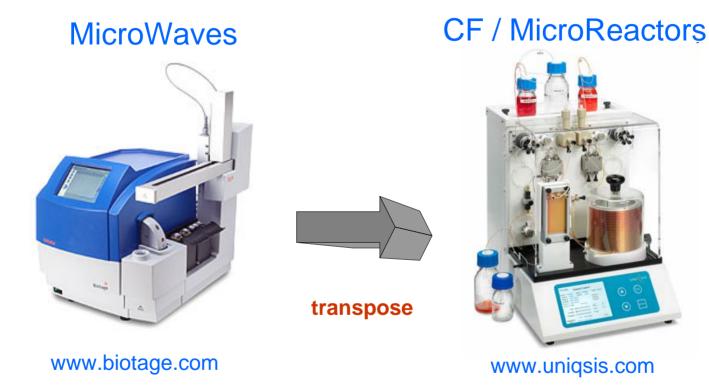
Typical Type C reaction requiring several hours The mixture was heated under a N₂ atmosphere at **100-105°C for 50 h**

- Segregation of Feeds: NaN₃ prepared in a special containment and precisely mixed in the reactor avoiding batch bulk handling
- Volume Minimization & Robustness: Atmospheric batch process with 100% accumulation of heat -> in a bunker R¹ CN + M N₃

Gutmann et al., Angewandte Chemie International Edition 2010, DOI:10.1002


Development of Type C Reactions in MW

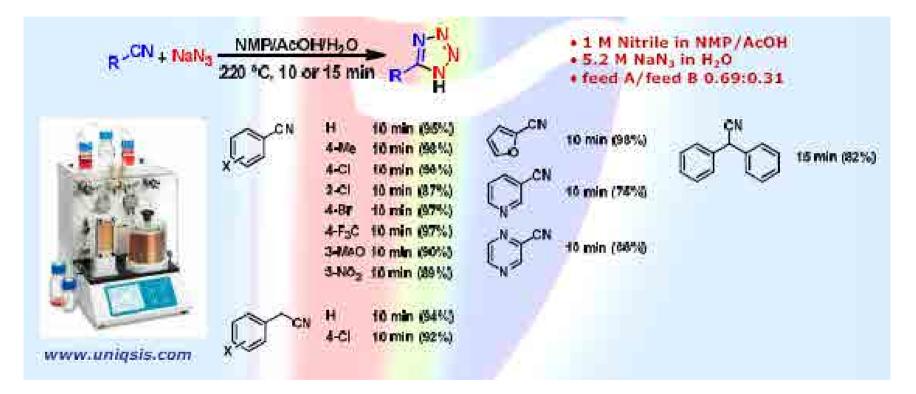
Advantages


- Small autoclave in glass of 2 mL that can sustain ca 20 bar
- Expeditious reaction mixture heat up
- Use extensively in the medicinal chemistry

Disadvantages

- Not scalable in bulk
 - Microwave penetration is a few mm only
- Larger cost of energy
- No magic MW effect

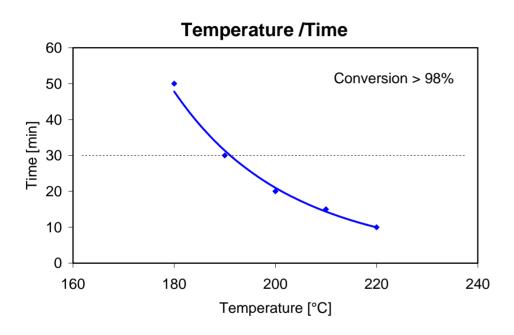
Strategy


- High throughput machine
- Higher degree of freedom than in CF
- High throughput machine as well
- Need homogeneity
- Results are transposable

MW Screening Results

Solvent Composition Solvents / Additives 7:2:1 mixture 5:2:3 mixture 60 Tetrazole Tevozole 96 ZnBr₂ HCI ACOH NMP DME/PrOH NH₂CI ACOH THE 255

Solvents / Additives

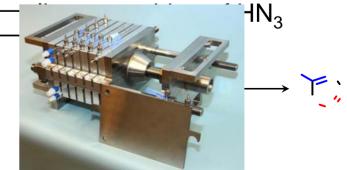

Optimization in CF

Optimized in CF

- NMP/AcOH/H2O = 5/2/3
- Slightly reduce reaction rate

Drastic Intensification via Flow

Segregation of Feeds


- Feed-1: 1 M nitrile in NMP / AcOH
- Feed-2: NaN₃ in water
- NMP/AcOH/H2O = 5/2/3, 2 equi. of NaN₃

Optimized Conditions

- Acetic acid as proton donor = in situ formation of HN₃
- Water to allow solubility of NaN₃
- Micromixer at higher T = avoidance of precipitation
- No HN₃ headspace and in-

R-CN + H+ -

NaN₃ ·

Reaction and Work Up Integrated in One Flow Unit

Mini-Plant concept to enable **New Processes** and extend the design space of how we perform chemistry

Key Features

- Microreactor for a flash reaction
- CSTR for precipitation
- High pressure valve
- Filter to removal salt

Throughput

 More than 1 kg/day of product; distillation is limiting

- Wiped film evaporator
- Fraction collector

Mini-Plant Technology at the Center of Flow Processes

Mini-Plant concept to enable **New Processes** and extend the design space of how we perform chemistry

- Microreactor for flash reactions
- Mixers-settlers/acid neutralization
- Distillation
- Reactor cascade (CSTR)
- Liquid-liquid extraction
- Fully automated system

Throughput

- 250 mL \rightarrow 10 kg/day of product
- 1000 mL → 40 kg/day

Batch Versus Flow: Comparison at Various Scales

Example 1: Process development in clinical trials / kg scale		
Batch Process	Flow Process	
Reactor volume = 250 L	Reactor volume = 250 mL	
	Faster change over & cleaning	
	Manufacturing gain = up to 30%	
Example 2: Commercial manufacturing / ton scale		
Batch Process	Flow Process	
Reaction time = 10 - 14 h	Reaction time = 0.2 h	
Reactor volume = 10 m³	Reactor volume = 0.03 m³	
Cycle time = 21 h	Cycle time = 16 h	
Productivity = 764 kg/d	Productivity = 977 kg/d	
Need bunker to cover the 10 m ³ Investment = 4 MCHF for a bunker infrastructure	Lower assets usage; special confinement	

Please visit the reactors at booth H.18

Conclusions

Flow technologies are at the forefront of a quantum leap in pharmaceutical manufacturing leading to greener processes at lower costs

Design new chemical routes

Lonza is a leading manufacturer of fine chemicals using flow processes and advanced technologies

The heart of the process is the microreactor

Acknowledgments

- N. Kockmann, M. Eyholzer, M. Gottsponer, J.-P. Roduit, C. Noti, B. Rittiner (Lonza)
- O. C. Kappe, B. Gutmann (University of Graz)