

Green Chemistry at Pfizer

James Long Pfizer Green Chemistry Tea

Agenda

Introduction to Green Chemistry at Pfizer

Engagement and alignment across the company
 Supporting and influencing external environment

Making a Difference through Green Chemistry

- ✓ Internal tools helping chemists "go green"
 - ✓ Solvent Selection Guide
 - ✓ Reagent Selection Guide

Case Study – Pregabalin Process Development Program

- Spans whole company from Medicinal Chemistry to Manufacturing
 - Green Chemistry Team covers Med Chem, Process Development, Pilot Plant Manufacture, EHS and Full Scale Manufacturing
 - Early engagement of medicinal chemists ensures green concepts are installed early in the development life cycle
 - Engineering solutions are employed (e.g. PAT, Continuous Processing, Biocatalysis etc)
- Hold Green Chemistry seminars at all our research sites - by chemists for chemists with prominent chemistry speakers

- Hold annual Green Chemistry Awards
 - Focused on core topics from the 12 Principles of Green Chemistry
 - Prevention and reduction of waste products including energy.
 - Maximisation of atom economy.
 - Develop less hazardous chemical synthesis with safer reagents and solvents.
 - Use of catalysts including enzymes
 - Use of renewable feedstocks with the potential for solvent recycling.
 - Winners nominated a University (which ideally supports and champions GC research) for a £3,000 donation

- Membership in the ACS GCI Pharmaceutical Roundtable
 - Let Academics and Govt agencies know the key challenges in Pharmaceutical Manufacturing so they can be addressed
- Academia Aim to positively shape today's research to solve industry (and society's) needs. Much of our chemistry is based on reactions established 50-100 years ago!
 - Amide Formation with high economy
 - Amide Reduction (through the Roundtable)
 - Oxidations without chlorinated solvents
 - Suzuki Reactions without halogenation (through the roundtable)
 - Solvent Recovery using membrane technology
- Work with other pharmaceutical companies to deliver Green Chemistry workshops for university students in the UK and Ireland

Internal Tools

Solvent Selection Guide

- Solvent Reduction Program
- Reagent Selection Guide

Preferred

Use of Internal Tools – Pfizer Solvent Selection Guide

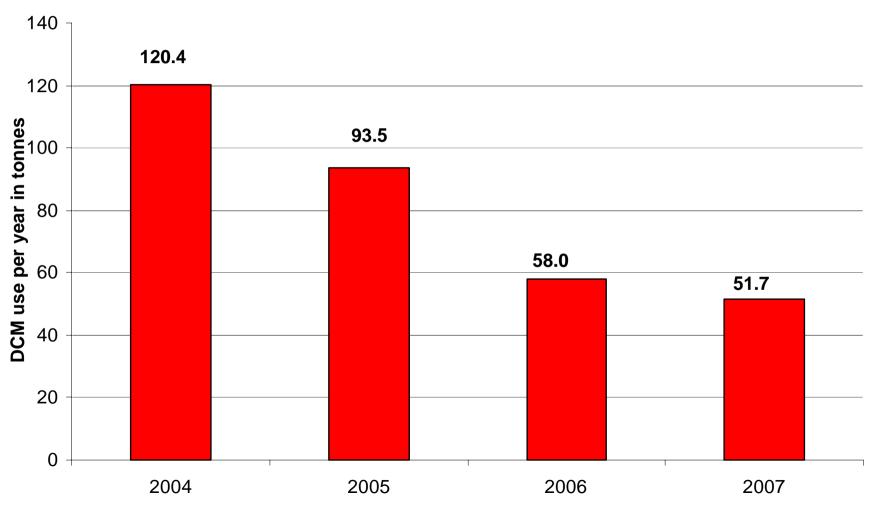
Usable

Water
Acetone
Ethanol
2-Propanol
1-Propanol
Ethyl Acetate
Isopropyl acetate
Methanol
Methyl Ethyl Ketone
1-Butanol
<i>t</i> -Butanol

Cyclohexane Heptane Toluene **Methylcyclohexane** t-Butylmethyl Ether Isooctane Acetonitrile 2-Me Tetrahydrofuran **Tetrahydrofuran Xylenes Dimethyl Sulfoxide Acetic Acid Ethylene Glycol**

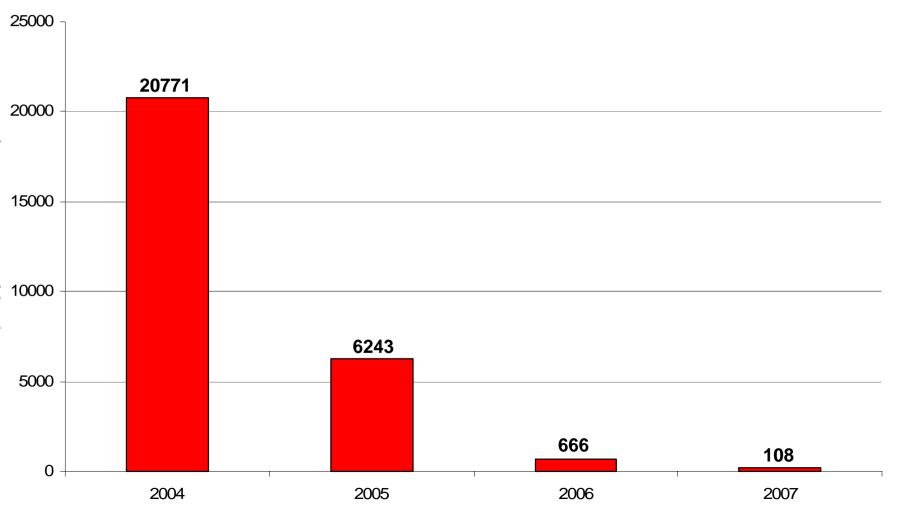
Undesirable

Pentane Hexane(s) **Diisopropyl ether Diethyl ether Dichloromethane Dichloroethane** Chloroform N-Methylpyrrolidinone **Dimethyl Formamide Pyridine Dimethyl Acetamide** Dioxane Dimethoxyethane

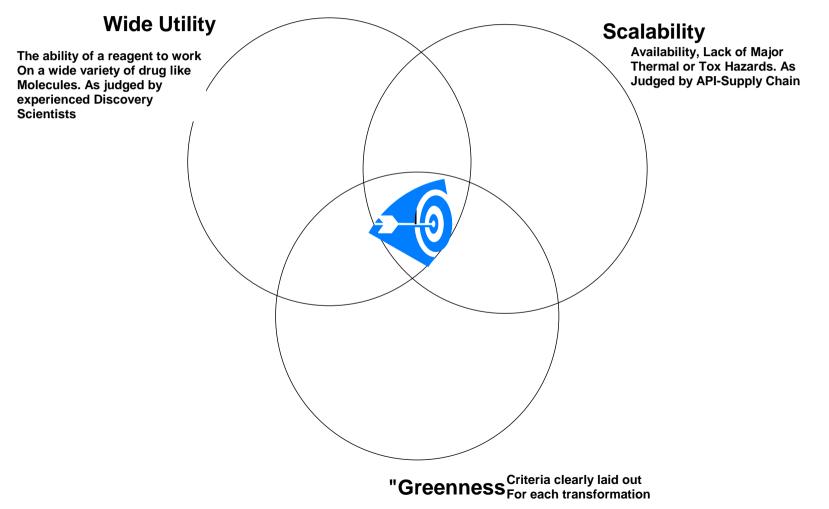


Red Solvents	Alternative
Pentane	Heptane
Hexane(s)	Heptane
Diisopropyl ether or ether	2-MeTetrahydrofuran (2-MeTHF) or t-Butyl methyl ether (TBME)
DCM (extractions)	EtOAc, TBME, Toluene, 2-MeTHF
DCM (chromatography)	EtOAc, Heptane
Dioxane or dimethoxyethane	2-MeTHF or TBME
Chloroform, dichloroethane or carbon tetrachloride	Dichloromethane
DMF, NMP or DMAc	Acetonitrile
Pyridine	Et ₃ N (if pyridine used as base)
Benzene	Toluene

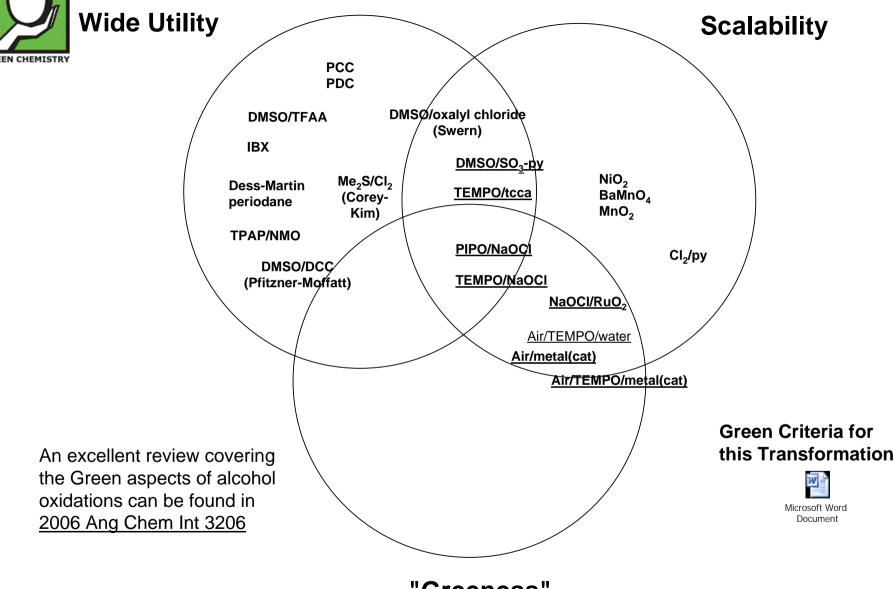
Pfizer Green Chemistry Results – Some Examples


Combined Groton, Sandwich and La Jolla DCM use 2004 - 2007

Year



PGRD Global Diisopropyl Ether Use



Pfizer Green Chemistry – Reagent Selection Guide

Example: Oxidation of Primary Alcohol to Aldehyde

"Greeness"

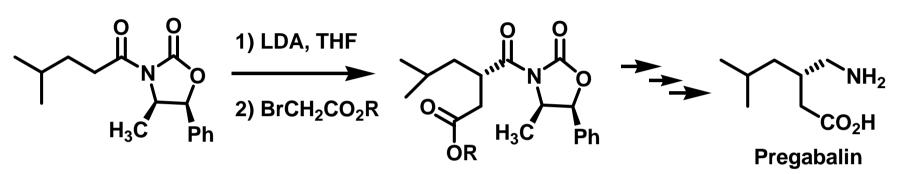
List of Transformations

- Alcohol to Aldehyde
- Alcohol to Ketone
- Ester to aldehyde
- Reductive Amination
- Amide coupling (achiral)
- Amide coupling (chiral)
- Redn of primary amide
- Redn of secondary amide
- Redn of tertiary amide

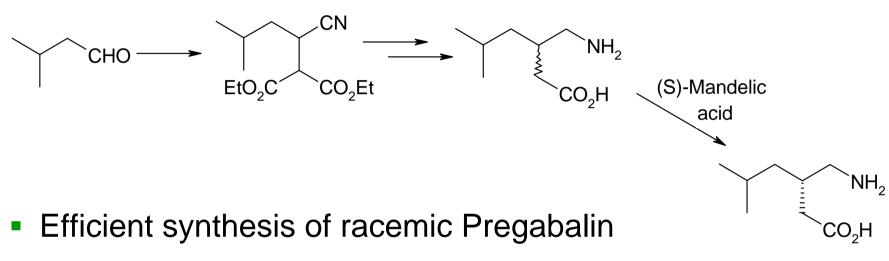
- Alkyl-OH to Alkyl-N
- Het.Aryl-OH to Het.Aryl-N
- Aryl-OH to Aryl-N
- Suzuki
- Heck
- Aldol
- Grignard Formation and Rxn
- Sonogashira Reaction
- Ketones to Chiral Alcohols

Green Chemistry Results

Case Study - Pregabalin

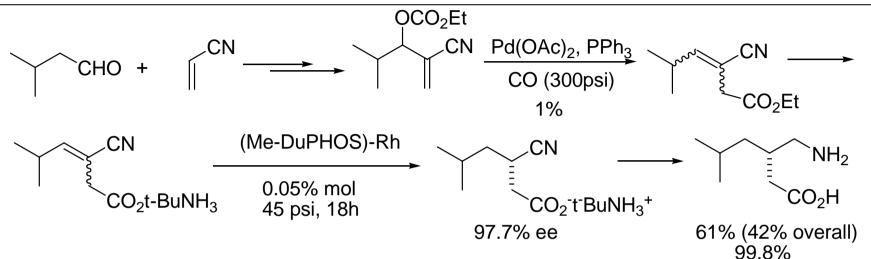

Green Chemistry in Process Dev.

- Exemplified by the Pregabalin Process Dev. Program
- Pregabalin (Lyrica[®]) is a Drug for the treatment of Neuropathic Pain
- Launched in the US in September 2005
- Sales \$1.16 billion (2006) \$1.8 billion (2007)


Medicinal Chem. Pregabalin Synthesis

- 10 steps, 33% overall yield
- Cost was 6x target

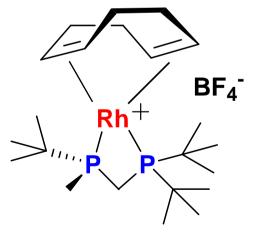
Pregabalin (Lyrica[™]) Launch Process


25-29 % overall

> 99.5 % ee

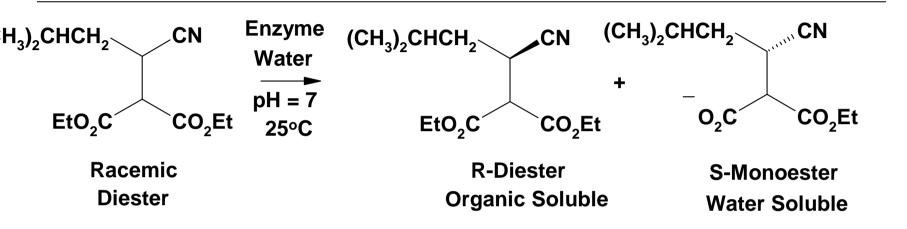
- Final Step Classical Resolution
- Wrong enantiomer difficult to recycle
- E-Factor 86
- Significantly cheaper than the Medicinal Chemistry route

Asymmetric Hydrogenation Route


Higher yield (42% overall)

Original Catalyst (1% Pd, 0.05% DuPHOS-Rh)

Licensed chiral ligand expensive

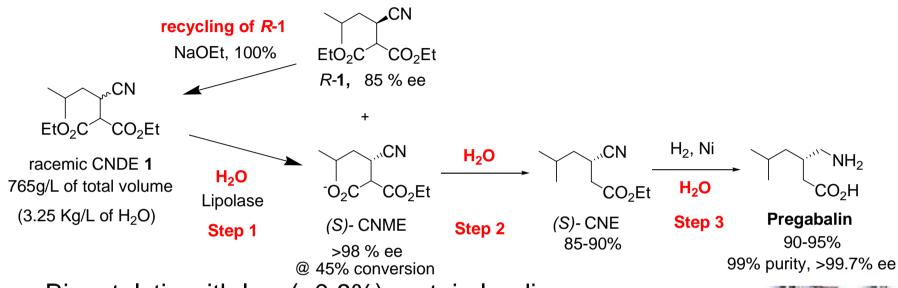

In-house chiral ligand developed – even lower costs

Much improved environmental profile but similar cost to resolution route.

(S)-[Rh-Trichickenfootphos

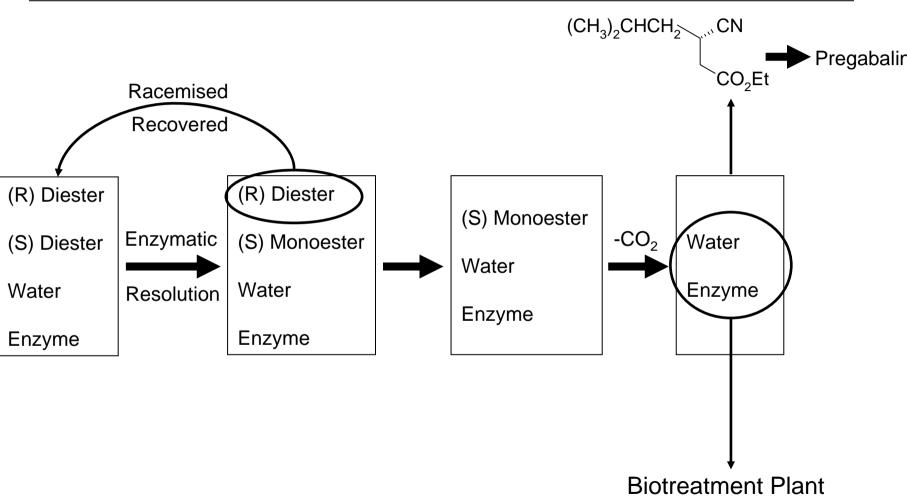
Enzymatic Resolution of CNDE

Enzymatic hydrolysis of Cyano diester enabled early resolution of chiral center


Hydrolase screen revealed 2 (S)-selective hits with E>200:

- Thermomyces lanuginosus lipase (Novozymes)
- Rhizopus delemar lipase (Amano)

Biocatalytic Kinetic Resolution Route



- Biocatalytic with low (~0.8%) protein loading
- Resolution at first step (wrong enantiomer recycled)
- High throughput; simple operations
- All three reactions conducted in water
- Yield increased to 40% to 45% (after 1 recycle)
- Enzymatic Step scaled up to 10 MT scale
- E Easter improved from 96 to 17

The Pregabalin Process

Pregabalin Process Comparison

	Kilograms		
Inputs	1st Generation Route	New Route	
CNDE	6212	4798	
Enzyme	0	574	
(S)-Mandelic acid	1135	0	
Raney nickel	531	79.5	
Solvents	50042	6230	
Total	57920	11681.5	

Table 1. Inputs for 1000 kg Pregabalin via 1st Generation and New Routes

Chemoenzymatic route uses >5x less inputs than 1st generation route

Pregabalin Synthetic Improvements

- By replacing all reaction solvents with water, bringing the Resolution to the beginning, and the Raney nickel reduction to the end, the proposed improvements will yield annual improvements of:
 - Starting material usage reduction of 800 tons
 - Solvent reductions:
 - Methanol 1 million gallons
 - Ethanol 0.4 million gallons
 - Tetrahydrofuran 2.2 million gallons
 - Isopropanol 2 million gallons
 - Mandelic Acid usage eliminated 500 tons
 - Energy Use reduced by 83 %

Pregabalin Summary

- New Enzymatic Chemistry successfully manufactured on 10MT scale.
- Process was switched in 3Q2006
- By making the switch to optimal route very early in the product lifetime, Pfizer ensures close to maximum benefits to the environment.
- In 2006 Pfizer received the AstraZeneca Award for Excellence in Green Chemistry and Engineering for its work on Pregabalin
- Chemistry published Martinez et al (OPRD 2008, 11, 392)

Take Away Messages

- Green Chemistry starts in Medicinal Chemistry with early engagement of laboratory chemists
- Integrating Green Chemistry as part of the core of our business ensures successes are recognised and rewarded
- Green Chemistry initiatives have resulted in significant environmental benefits
 - 60% reduction in Dichloromethane usage
 - Elimination of Diisopropyl Ether as a solvent in Med Chem
- Provides cost effective solutions
 - Even at lab scale cost savings can be realized
 - Manufacturing scale process changes save \$MMs

Thanks and Acknowledgment

- Pregabalin Team
- Members of the Pfizer Green Chemistry teams
- Pete Dunn Pfizer's "Green Guru"
- Partners in education and research
- To YOU today's audience!