

Going with the Flow – the evolution from batch to continuous hydrogenation

Gary Kelly

GlaxoSmithKline, Chemical Development, Tonbridge, UK


Slide 1 of 18

Outline

- Prior GSK hydrogenation experience
 - Batch
 - Continuous
- The IMPULSE project collaboration
 - Background
- Continuous hydrogenation design
 - Applied to sumatriptan chemistry
 - CNRS-Lyon : aq. EtOH solvent process.
 - GSK : NMP solvent process.
- Conclusions
- Acknowledgments

Prior GSK Experience - Batch

Extensive design capability

-Parallel screening/development, 2- 40ml scale.

-Process verification, 0.5 – 20 litre scale.

-Scale-up to plant, 200 – 1600 litres.

Sound scale-up principles applied

-Gas mass transfer (k_La) is fundamental scale-up parameter. -Self-aspirating agitators and high performance hydrofoils are employed to enhance reactor performance.

Gary Kelly, June 2009

Slide 3 of 18

Prior GSK Experience - Continuous

- Mkl continuous hydrogenator
 - Custom design, installed in 2000
 - CSTR design, 50 500ml.
 - Proof of concept 2000-2002.
- Mkll continuous hydrogenator
 - Custom design, installed 2003.
 - 2x 800ml CSTR, 1 x PFR in series or parallel.
 - Commissioned with model chemistry 2006.
- Mkll Upgrade
 - GSK designed and installed 2 x PFR reactors 2008.
 - Duty / Stand-by mode to support the IMPULSE project.

GSK Lab Continuous Capability

•GSK Tonbridge –CSTR

•40ml custom CSTR, 100 bar rated.

•2 x 800ml custom CSTR, 100 bar rated, in series or parallel operation.

GlaxoSmithKline

-PFR

Custom 2 x 120ml PFRs, 100 bar rated.
Configured for duty/stand-by operation.
Designed and installed in 2008.

IMPULSE – Continuous Hydrogenation

• IMPULSE:

- Integrated Multiscale Process Units with Integrated Structured Elements.
- Goal: Replacement of batch processes by steady-state continuous flow systems.
- Performance Objectives: Reduce costs and environmental impact, enhance product quality, process robustness and sustainability.
- Continuous Hydrogenation Demonstration
 - CNRS Lyon
 - Assess novel reactor types presented by Consortium Partners.
 - Conduct primary continuous hydrogenation evaluation with the model sumatriptan process.
 - GlaxoSmithKline
 - Provide infrastructure to install the selected reactor type.
 - Support demonstration experiments.

IMPULSE Reactor Design Decision

- A range of novel reactor designs supplied by IMPULSE consortium partners were assessed at CNRS Lyon.
 - Micro-structured falling film and packed bed reactors, mesh-stabilised film contactor.
 - None of the novel reactors were suitable for scale-up to the demonstration study.
 - Parallel studies on the test chemistries were conducted in "traditional" CSTR and PFR reactors.
- In January 2008 the decision was taken to progress with a PFR design for the demonstration in 2008-2009.
 - Consortium partners were approached to deliver a suitable demonstration PFR, however no reactor was delivered.
 - In parallel, GSK designed and installed a duty/stand-by PFR system as a contingency – this was employed for the demonstration.

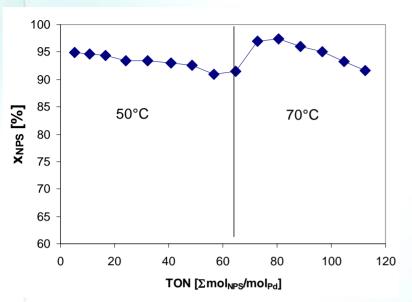
Sumatriptan process

•The major reaction pathway is via the hydroxylamine (NHOH) intermediate.

-Minor reaction pathway via azoxy dimer species.

Commercial batch mode info

-Initially a slurry (low solubility of 4-NPS in aq. EtOH).


-5% Pd/C powder employed, 5% w/w wrt 4-NPS.

-Conducted at 70-80°C, 1.4 bar, ~6 hrs (105kg input, 0.69M).

-4-APS soluble in aq. EtOH, catalyst separated.

–Batch TON = 388.

CNRS-Lyon Developments

		CNRS, Lyon
reactor diameter	<i>[mm]</i>	20
reactor length	<i>[mm]</i>	170
reactor volume	$[cm^3]$	48
$v_{L} \ge 10^{3}$	[<i>m</i> / <i>s</i>]	1.7 - 7
VG	[<i>m</i> / <i>s</i>]	0.12 - 0.47
pressure	[bar]	10
temperature	[K]	323 - 343
catalyst	_	1% Pd/C
particle diam.	<i>[mm]</i>	2 x (2-7), cylinders
reactor/particle diam.	[-]	10
catalyst mass	[g]	24
Palladium mass	[g]	0.2408
4-NPS concentration	[M]	0.02

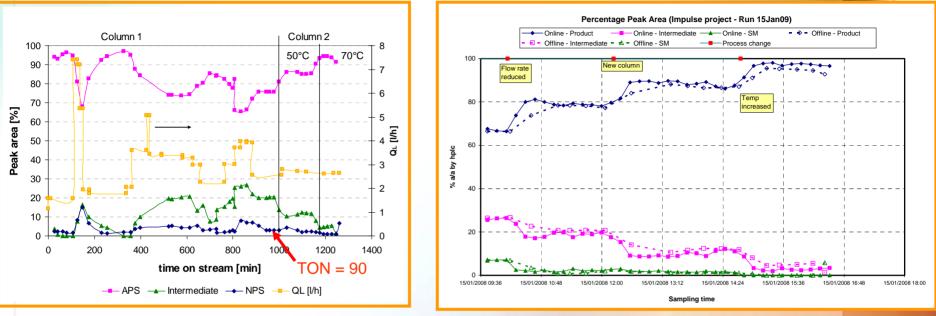
•Reaction investigated in CSTR & PFR.

•Reaction diluted from original batch value of 0.69M to 0.02M to achieve solution chemistry.

•Catalyst deactivation observed (as decrease in 4-NPS conversion).

-e.g. 4% conversion decrease at TON=60, 50°C.

CNRS-Lyon aq. EtOH Process: Demonstration at GSK


		CNRS, Lyon	GSK, Tonbridge
reactor diameter	[mm]	20	15.7
reactor length	[mm]	170	670
reactor volume	$[cm^3]$	48	129
$v_{\rm L} \ge 10^3$	[m/s]	1.7 - 7	1.6 - 10.6
VG	[m/s]	0.12 - 0.47	0.17 - 0.34
pressure	[bar]	10	10 - 40
temperature	[K]	323 - 343	323 - 343
catalyst	-	1% Pd/C	2% Pd/Al ₂ O ₃
particle diam.	[mm]	2 x (2-7), cylinders	2-4, spheres
reactor/particle diam.	[-]	10	5.2
catalyst mass	[g]	24	61
Palladium mass	[g]	0.2408	1.22
4-NPS concentration	[M]	0.02	0.02

Significant Process Changes

- -Different catalyst type at GSK
- -Increased Pd mass.
- -Increased reactor volume.
- –Plant limitations on the V_G flow rate.
- -Lower reactor/particle diameter ratio.

CNRS-Lyon aq. EtOH Process: Demonstration at GSK

•A range of process parameters investigated.

- Liquid & gas flow rate, temperature.

•Evidence of catalyst deactivation at TON ~ 90.

Switch to stand-by column successfully demonstrated.
On-line hplc data collected, good comparison with off-line results.

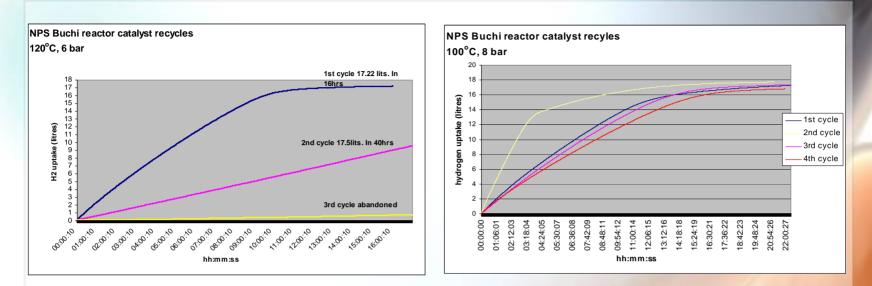
CNRS-Lyon aq. EtOH Process: Conclusions

reactor	v_L x 10^3	VG	Т	р	TON	LHSV	yield _{APS} (x _{NPS})	$r_{NPS} \ge 10^5$
	[m/s]	[m/s]	[K]	[bar]	$[n_{NPS}/n_{Pd}]$	$[n_{NPS}/n_{Pd}.h]$	[%]	$[mol_{NPS}/g_{Pd}.s]$
Tonbridge	2.25	0.17	323	15	3	2.3	94.7 (97.8)	0.71
Tonbridge	3.7	0.17	343	15	15	4.48	93.9 (99.0)	1.17
Tonbridge	4.7	0.17	323	25	53	5.7	73.7 (95.5)	1.49
Tonbridge	3.82	0.17	323	14	8	4.6	84.7 (97.7)	1.21
Tonbridge	10.6	0.17	323	34	13.7	12.9	67.9 (84.8)	3.38
Lyon	1.72	0.47	323	10	50	15	77.6 (92.3)	3.86
Lyon	1.72	0.47	343	10	73	15	85.9 (95.1)	3.98
Lyon	6.9	0.47	335	10	25	75.1	70.7 (72.9)	14.5

•Hourly productivity lower at GSK demonstration (LHSV):

- -Different hydrodynamic conditions affect mass transfer and/or
- lower catalyst activity (different catalyst employed).
- Gas flow rate had no impact within the higher pressure range employed at GSK.
- Reactor switch–over demonstrated successfully, demonstrating feasibility to manage catalyst deactivation.

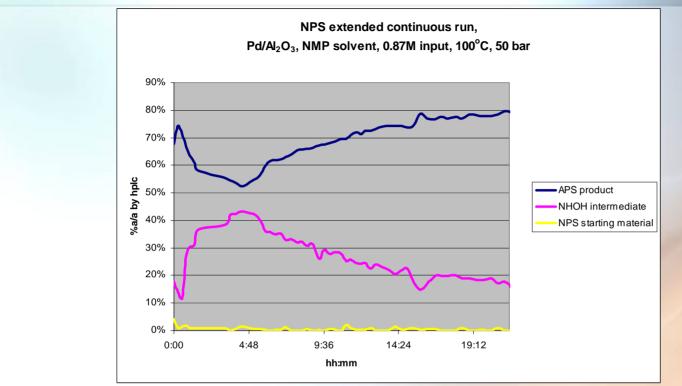
GSK Process Developments



- Process development in batch mode:
 - 2% Pd/Al₂O₃ catalyst identified (2- 4mm spheres, suitable for PFR).
 - N-methyl pyrrolidinone (NMP) solvent
 - Higher 4-NPS input solubility
 - Typical working concentration 0.87M (compare 0.02M for aq. EtOH process).
 - Process parameters optimised by DoE.
- Verification in 2 litre Buchi autoclave.
 - Catalyst basket recycle experiments.

GlaxoSmithKline

Catalyst Deactivation in NMP : Batch Mode



•Severe Catalyst deactivation in NMP at 120°C.

- Complete deactivation on 3rd catalyst cycle.
- Appears to be coking effect on the catalyst.
- •Optimal temperature of 100°C determined.
 - Four catalyst cycles demonstrated.

•Optimal Process conditions were transferred to the continuous mode.

NMP Continuous Demonstration

•Practically complete conversion of 4-NPS input throughout. –Accumulation of NHOH intermediate.

•Conversion to 4-APS product improves as the run progressed.

-In-line filters were blocking due to particulates.

-Flow rate fell, reactor residence time increased.

-Average flow-rate ~2ml/min (LHSV 6.7)

•No indication of catalyst deactivation in duration of run.

•Switch-over to stand-by reactor successful.

-In-line filter issues terminated the stand-by run prematurely.

Summary: aq. EtOH vs. NMP process

	Input conc. (mol/L)	temp (°C)	pressure (barg)	TON	Time on stream (hrs)	Flow rate required to achieve 50g/hr 4- APS output (L/min)
Original Batch Process (aq.EtOH)	0.69	70 - 80	1.4	388	6	n/a
Lyons Continuous Process (aq. EtOH)	0.02	50 - 70	10 - 40	90	17.7	0.179
GSK Continuous Process (NMP)	0.87	100	50	145	21.5	0.005

• Higher throughput potential with NMP.

• No evidence of catalyst deactivation in NMP (at TON 145). –Known deactivation with aq. EtOH.

Conclusions

- The viability of continuous hydrogenation in the pharmaceutical industry has been demonstrated.
- PFR technology allows a simple catalyst management regime to address catalyst deactivation.
- GSK are committed to further evaluation and application of the technology, in order to fully exploit the potential of continuous processing across the emerging portfolio.

Acknowledgments

GSK

- Paul Richardson,
- Clemens Brechtelsbauer,
- Ulrich Hiemer,
- Andrew Macey

CNRS-Lyon

- Claude De Bellefon,
- Petr Stavarek

GlaxoSmithKline