Continuous crystallisation using oscillatory baffled plug flow crystalliser

Professor Xiong-Wei Ni, BSc, PhD, CEng, CSci, FIChemE NiTech Solutions Ltd Scottish Enterprise Technology Park East Kilbride, Glasgow G75 0QF, UK

www.nitechsolutions.co.uk

18th June 2008

Structure

- **1. Crystallisation science**
- 2. Challenges in industrial crystallisation
- 3. Continuous oscillatory baffled crystalliser
- 4. Case studies
- 5. Forward remarks

1. Crystallisation Science

- Crystallisation "pathway" Crystallisation is a relatively simple process Metastable **Concentration** zone But the underlying science and Supersolubility its control are very complex! **Solubility** In industrial scales, operators' Labile experience still plays a major part **Under-saturated** Temperature
 - Supersolubility or metastable limit is thermodynamically not found and kinetically not well defined, depending on temperature, rate of generating supersaturation, solution history, impurities, fluid dynamics, scale and etc.

Science

Product

Supersaturation Concentration Temperature Cooling profile Mixing Solvent/additives

Seeding

Crystal size and shape Morphology Purity

Nucleation mechanism Nucleation rate

Growth mechanism

Growth rate

Functionality (materials) Bio-availability (drugs)

Surface activity (catalysts)

Texture (foods)

Process

Science

Nucleation

- What initiates?
 - not well understood
 - 3-D assembly of molecular clusters on nm scale
 - very fast kinetics
 - not easy to detect (soft X-ray absorption spectroscopy)
 - modelling available, lack of validation
- How does it happen?
 - Primary nucleation without the presence of any crystalline matter
 - Secondary nucleation collision breeding, seeding

Determination of metastable zone width (MSZW) using a turbidity probe

Metastable zone width (MSZW)

concentration = 45 g/L, f = 2 Hz, $x_0 = 10$ mm

MSZW depends on reactor, scale and operating conditions

- Dissolution a thermodynamic process
- Crystallisation a kinetic process

Crystal growth

- Mass transfer phenomenon
- Crystal growth phase must take place within the MSZW

Lab scale batch crystallisation

- Simultaneous multi-technique measurements during a crystallisation process
- Have promoted better understanding of crystallisation in lab scale
- Promoted better operation of crystallisation in small scale
- Linear cooling identified as one of the key operational parameters
 - Data rich
 - Lack of correlations between data
 - Disturbing flow conditions

Mixing affects

- Nucleation via collision breeding:
 - Walls of vessel
 - free surface of liquid
 - internals, e.g. stirrer, baffle
 - impurities, e.g. particulates, seeds
 - crystal/crystal & crystal/vessel collision
 - inhomogeneities due to mixing
 - MSZW
 - Crystal size distribution

2. Challenges in industrial crystallisation

- Our understanding in scaling up STR is limited
- There is no agreed rule or parameter on scaling
- Velocity gradient or non-homogeneity increases with scale
- Mixing gradient leads to temperature and mass gradient

Scale-up of stirred tanks

Industrial scale

Kinetic control

Mass/heat transfer control

Mixing cannot linearly be scaled in STR

Heat Transfer on Scale-Up

	Volume (m ³)	Area (m ²)	Area / unit Volume (m²/m³)
Typical 90 litre STR	0.09	0.9	10
Typical 6500 litre STR	6.82	15.8	2.3

Specific heat transfer area decreases with scale

Industrial batch crystallisation

Practical issues

Linear cooling is difficult to achieve in large STR

 Implementation of lab multi-measurement techniques is practically impossible in industrial scale

3. Continuous crystallisation

From the viewpoint of fluid mechanics

- i) consistent product quality can only be achieved in plug flows;
- ii) it is very rare to obtain plug flow conditions in batch STR!
- iii) Plug flow conditions can only be attained in continuous operation.

The conventional ways to achieve plug flow include

a) Using a series of CSTRsb) Employing a tubular reactor

a) Using a series of CSTRs

Plug flow is achieved when the number of CSTRs goes to infinite

Conclusions: a) significant increase in inventory, running and capital costs b) far from plug flow

Operating a tubular reactor at turbulent flow regime in order to obtain near to plug flow

Conclusion: a) significant high flow rates, leading to very long reactor and large capital costs b) very short residence time

NiTech's oscillatory baffled reactor (OBR)

Demonstration of radial mixing with good dispersion

Real system

3-D CFD simulation

 $Re_o = 1250 (x_o = 4 mm, f = 1 Hz)$

NiTech's Continuous OBR (COBRTM)

Residence time distribution (RTD) in a COBR

Probe 1

3.7 meters away from injection

Probe 2

7.9 meters away from injection

Probe 3

10.1 meters away from injection

 $D = 0.00007 \sim 0.0003 \text{ m}^2/\text{s}$

- Mixing controlled by the combination of oscillation and baffles
- Each baffled cell is a CTSR
- Plug flow at laminar flows
- Handles particulates
- Long residence times

Drop/Particle/crystal size distribution obtained in a COBR

Key differences from other tubular devices on the market

- Mixing is not controlled by net flow
- Plug flow achieved at laminar flows
- Excellent heat & mass transfers
- No concentration gradients
- Good with solids

Continuous oscillatory baffled crystalliser (COBCTM)

Heat Transfer on Scale-Up

	Volume (m ³)	Area (m ²)	Area / unit Volume (m²/m³)
Typical 90 litre STR	0.09	0.9	10
Typical 6500 litre STR	6.82	15.8	2.3
Typical 72m long 100mm diameter COBC™	0.56	22.6	40

COBC[™] has larger specific surface area for

Tube side heat transfer coefficient (w/m²K

	1cp	10cp	100cp
600 kg/m ³	61,654 - 282,717	817 - 3,694	7 - 28
1000 kg/m ³	133,315 - 611,447	2,327 - 10,575	21 - 82
1500 kg/m ³	232,744 - 1,067,534	5,209 - 23,730	47 - 196

Plug flow delivers excellent heat transfer

Control over cooling profile

Any cooling profile, e.g. linear, parabolic, non-continuous, stepwise and etc, can be obtained along COBC[™]

Multi-monitoring techniques in lab scale can be implemented alon COBC[™]

4. Case studies

- a) Morphology of a pharma crystal $\alpha + \beta$ crystals
- **COBC[™]** enables greater control over crystallisation path

 α crystals

Seed β crystals

Seed α crystals

b) Pharma API size on filtration

- Change on crystal size
- Impact on filtration

The residence time in the COBC translates to 12 minutes, compared to a batch cycle time of 8 hours, demonstrating a significant potential improvement in throughput relative to a batch manufacturing facility.

Shaken, Not Stirred: Taking Crystallisation from Pots to Ploes

Label, Makel David, FM Shalash, Burry Mashi, Libra 2

And Chargemont, Marked Surgery, Knowledge

Crystal Engineering: Enables better control of more rates 100 STC min

toduct is already manufactured at multi-tonne scale and so

compiled with the API specification, with additional and scanning electron microscopy and Focusses

ing COBC on a real pharmace

of conc. Inch. exercit potential benefits

Income Problem Manham Har d start -> lower capital investo

the toballar matches to finer hardwards measuratedly to produce

ing raise of up

Attach Brighton Ltd. Prof Eur an De as Also Jahan for welld alobe analysis

randicated

part Julie, White Junior, B. Marky James for city

Continuous Results

Kan an an

Teart	terdina	Juliabus	Harabeles	territor
and.	Feel	нуе	High	Mona
Large roat	Stan 0.2PC mitr*	Los	84	Mone
Large	Pest	Low	.84	Note
belie with	- PC min ⁴	104	High	Nota
and	feet	High	High	Thete @

ch run was analyzed as previously with the fillration study at varying pressures to characterise th

pressible cake behav

c) Filtration index for a pharma product

COBC[™] affects outcomes achieved

- Product characteristics/performance
- Consistent filtration index of 25

STR

d) Crystal size distribution of a fine chemical product

- More uniform size can be achieved
- Greater control on outcome

e) Fractionation of edible oils

- Two stage cooling (17 and 0.3 °C/min)
- Consistent IV achieved
- Significant reduction of crystallisation time
- Improved filtration
 time

f) Combined reaction & crystallisation

- Crash cooling
- Variable mean sizes from crystallisation after a reaction
- Crystals stuck to the walls of the vessel and surfaces of the impeller
- Consistent mean crystal size
- Linear cooling profiles in COBC[™] eliminated the events of crystal-sticking
- Minimise the down-time of washing/cleaning

4. Forward remarks

- Plug flow tubular crystallisation technology, such as COBC[™], can be used to bridge the gap between lab and industrial scale crystallisation operations
- Multi-monitoring techniques from lab scale crystallisation can directly be fitted along the COBC[™]
- COBC[™] can be incorporated into existing plants
- Continuous filtration could also be implemented in COBC[™]

Acknowledgement

Colleagues from NiTech

Gareth Jenkins, Excelsyn Ruth Lane

