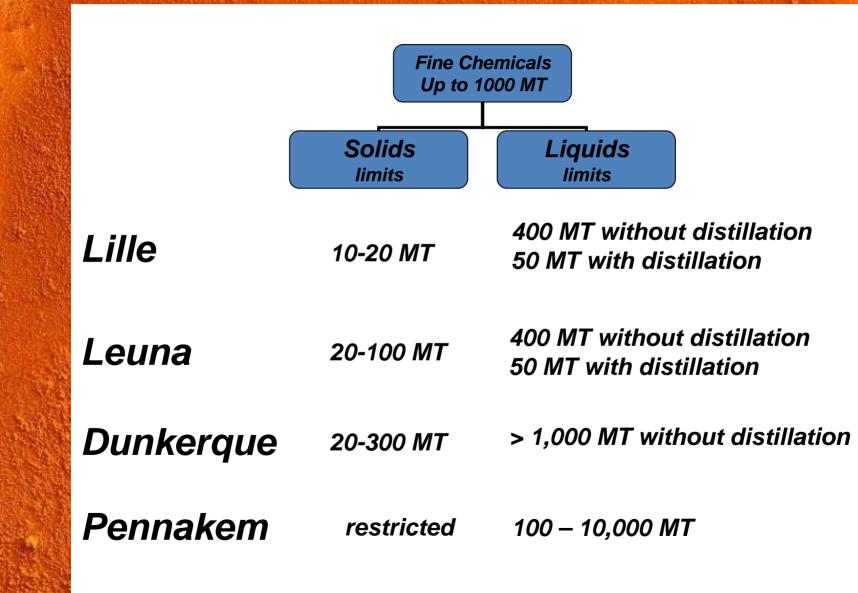


BORONIC ACIDS MANUFACTURE AT INDUSTRIAL SCALE

Dominique DELBRAYELLE, MINAKEM S.A.S.

AGENDA


- 1. Minakem overview
- 2. Boronic acids : a valuable tool for the chemist
- 3. Boronic acids synthesis
- 4. Borylation of lithiated species
- 5. Borylation of organomagnesium species
- 6. Quality control of boronic acids
- 7. Diethanolamine esters as boronic acid surrogates8. Q&A

MINAKEM

MINAKEM – overview

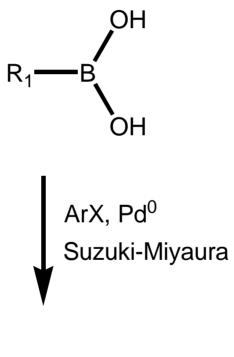
- 2005 acquisition of SEAC's fine chemical business by Minakem, 40 years of experience in custom synthesis. Located near Lille, North of France, FDA approved
- 2006 acquisition of Chemtec Leuna, Germany, near Leipzig
- 2008 Chemtec Leuna approved by the FDA for the first time, no 483's
- 2008 acquisition of Penn Specialties Chemicals, now PennAkem, Memphis, USA
- 2009 acquisition of the Astra Zeneca's state-of-the-art API site in Dunkirk, North of France
- 2010 activities in France & Germany unified under the Minakem name

MINAKEM – overview

AGENDA

1. Minakem – an overview

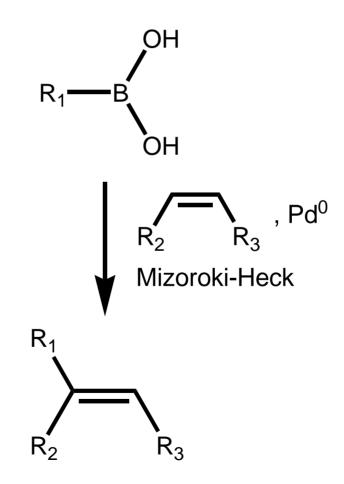
- 2. Boronic acids : a valuable tool for the chemist
- 3. Boronic acids synthesis
- 4. Borylation of lithiated species
- 5. Borylation of organomagnesium species
- 6. Quality control of boronic acids
- 7. Diethanolamine esters as boronic acid surrogates8. Q&A


BORONIC ACIDS : A VALUABLE TOOL FOR THE CHEMIST

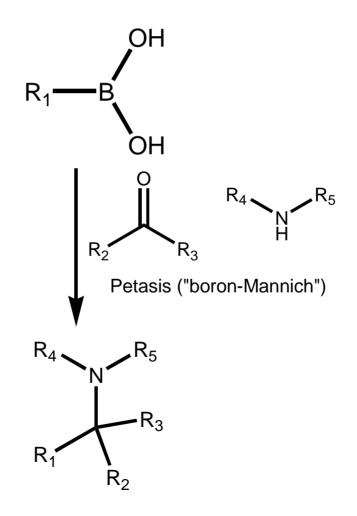
Z

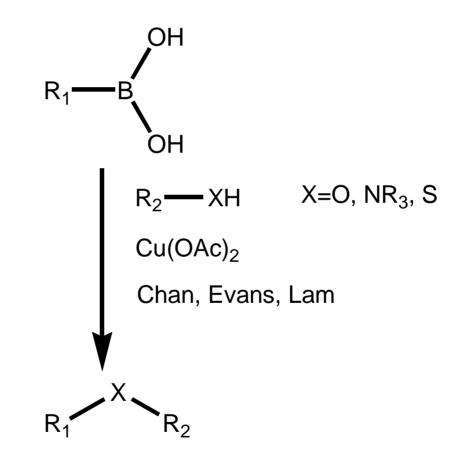
Oronic

6


C-C coupling : Suzuki-Miyaura reaction

NAKEN BORONIC ACIDS : A VALUABLE TOOL FOR THE CHEMIST

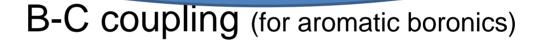

C-C coupling : Mizoroki-Heck reaction


BORONIC ACIDS : A VALUABLE TOOL FOR THE CHEMIST

C-C coupling : Petasis reaction

BORONIC ACIDS : A VALUABLE TOOL FOR THE CHEMIST

Copper-catalyzed C-X coupling



C

AGENDA

- 1. Minakem an overview
- 2. Boronic acids : a valuable tool for the chemist
- 3. Boronic acids synthesis
- 4. Borylation of lithiated species
- 5. Borylation of organomagnesium species
- 6. Quality control of boronic acids
- 7. Diethanolamine esters as boronic acid surrogates8. Q&A

BORONIC ACIDS SYNTHESIS

 $Ar - X + \begin{bmatrix} HB(OR)_2 \\ [B(OR)_2]_2 \end{bmatrix} \xrightarrow{\text{metal catalysis}} \begin{bmatrix} Ar - B(OR)_2 \end{bmatrix} \xrightarrow{\text{hydrolysis}} Ar - B(OH)_2$

11

Hydroboration of alkynes (for alkenyl boronics)

 $R_1 \longrightarrow R_2 + \frac{HB(OR)_2}{[B(OR)_2]_2} \xrightarrow{metal catalysis} \frac{hydrolysis}{R_1 \longrightarrow R_1} \longrightarrow B(OH)_2$

90)

C

AGENDA

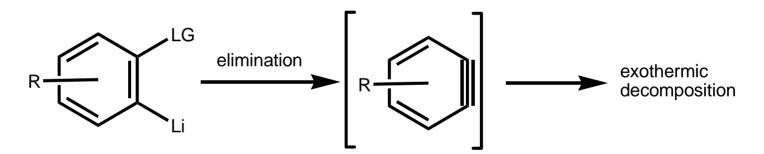
- 1. Minakem an overview
- 2. Boronic acids : a valuable tool for the chemist
- 3. Boronic acids synthesis
- 4. Borylation of lithiated species
- 5. Borylation of organomagnesium species
- 6. Quality control of boronic acids
- 7. Diethanolamine esters as boronic acid surrogates8. Q&A

BORYLATION OF ALKYL- OR ARYLLITHIUM SPECIES

Formation of the lithiated species

• by lithium-halogen exchange

• by directed ortho-lithiation



BORYLATION OF ALKYL- OR ARYLLITHIUM SPECIES

Stability of the lithiated species

Leaving groups ortho to the lithium can eliminate to benzyne-type products :

Thermal hazard !

BORYLATION OF ALKYL- OR ARYLLITHIUM SPECIES

Stability of the lithiated species

- decomposition often seen above -50°C
 - fast self-heating rate (up to 50°C/min)
- adiabatic temperature rise up to 100°C

BORYLATION OF ALKYL- OR ARYLLITHIUM SPECIES

Stability of the lithiated species

Maximum temperature usually remains below boiling point of solvent (e.g. THF bp=67°C)

BUT

in ortho-lithiation reactions, sudden <u>butane</u> <u>release</u> is the major hazard !

BUTANE bp=-1°C extremely flammable

T

17

BORYLATION OF ALKYL- OR ARYLLITHIUM SPECIES

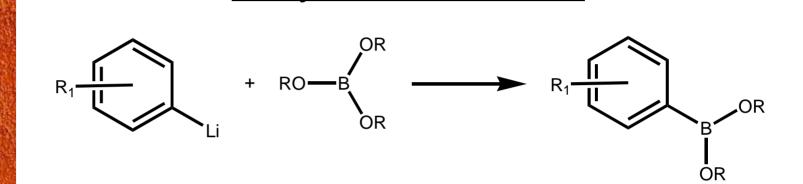
Addressing the stability issues

- determination of the onset temperature by heating experiments
- operating conditions adjustments accordingly
- reactor design for fast quench of the reaction mixture

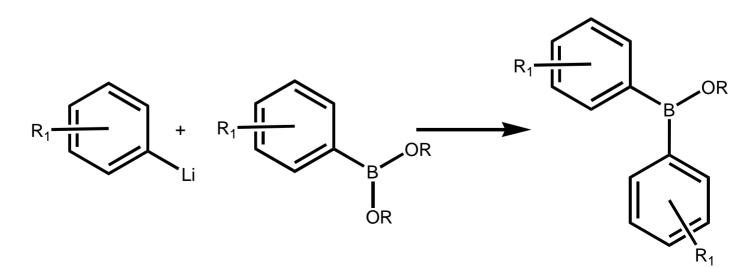
T

18

BORYLATION OF ALKYL- OR ARYLLITHIUM SPECIES


Addressing the stability issues

 use of hexyllithium instead of butyllithium reduces the risk of overpressure in the vessel


- use of 2-methyITHF instead of THF adds 13°C of safety margin
- addition of anhydrous MgCl₂ reduces the rate of decomposition (Rawalpally & al., Org. Proc. Res. Dev. 2008, 12, 1293-1298)

BORYLATION OF ALKYL- OR ARYLLITHIUM SPECIES

Borylation reaction

Side reaction gives borinic acid

T

20

BORYLATION OF ALKYL- OR ARYLLITHIUM SPECIES

Borinic acid side-product

- the amount of borinic acid formed is very variable depending on the substrate
- borinic acid behaves like boronic acid in coupling reactions
 BUT

is lost on boronic acid isolation : yield loss or not : purity loss

21

BORYLATION OF ALKYL- OR ARYLLITHIUM SPECIES

Borinic acid side-product: how to minimize it ?

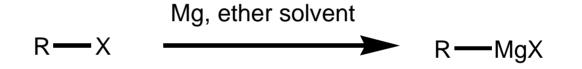
• excess borate reduces the borinic acid formation (but gives boric acid on hydrolysis)

- low temperature reduces second addition
 - triisopropyl borate vs. trimethyl borate
 - order of addition of the reagents

BORYLATION OF ALKYL- OR ARYLLITHIUM SPECIES

Order of addition of the reagents

- lithiated species onto cold borate OK if no stability issues
- usually borate onto lithiated species with controlled addition rate
- for reactive lithiated species : butyllithium onto mixture of starting material and borate


C

AGENDA

- 1. Minakem an overview
- 2. Boronic acids : a valuable tool for the chemist
- 3. Boronic acids synthesis
- 4. Borylation of lithiated species
- 5. Borylation of organomagnesium species
- 6. Quality control of boronic acids
- 7. Diethanolamine esters as boronic acid surrogates8. Q&A

Formation of the Grignard reagent

• by direct reaction with magnesium metal

• by halogen-magnesium exchange

$$R - X + iPrMgX' - R - MgX'$$

XbM-

Formation of the Grignard reagent

Side reaction : Wurtz-type coupling

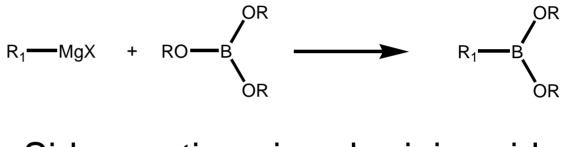
Yield loss

- Excess borate reagent in the borylation step
- Potential impurity in final product, especially if telescoped process with Suzuki coupling

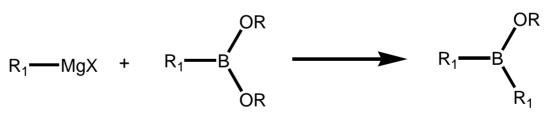
XoN-

-NgX-

26


Minimizing by-product : Methyl THF

#	Reagent	Solvent	Organomagnesium Yield	MeTHF Yield Improvement
1	benzyl chloride	THF	85%	14%
		MeTHF	99%	1470
2	benzyl bromide	THF	83%	15%
		MeTHF	98%	1376
3	o-methylbenzyl chloride	THF	78%	19%
		MeTHF	97%	1970
4	o-chlorobenzyl chloride	THF	20%	66%
		MeTHF	86%	00 70
5	allyl chloride	THF	73%	16%
		MeTHF	89%	1076


P. Rittmeyer et al., Chemetall DE 19808570

Suppression of dimerization for benzyl and allyl substrates is general

Borylation reaction

Side reaction gives borinic acid

Same issues as with lithiated species

Borylation reaction

Low solubility of the Grignard reagent can be problematic

- RM thick or not stirrable at low temp, dilution required
 - reagent precipitation during transfer

Xom-

28

Here again, Methyl THF is a solution !

Grignard reagents in Methyl THF

Reagents	% Sol. In MeTHF	% Sol. In THF
MeMgBr	35%	15%
EtMgBr	40%	10%
PhMgBr	45%	15%
EtMgCl	30%	25%

Easier handling, better productivity Easier workup (not miscible with water)

BORYLATION OF ORGANOMETALLICS

Reaction workup

1) Acidic quench

rku

- boronic ester hydrolyzed to boronic acid
- excess borate gives boric acid
- 2) Extraction
- 3) Crystallization
 - dehydrating conditions give boroxine (cyclic anhydride)

90)

C

AGENDA

- 1. Minakem an overview
- 2. Boronic acids : a valuable tool for the chemist
- 3. Boronic acids synthesis
- 4. Borylation of lithiated species
- 5. Borylation of organomagnesium species
- 6. Quality control of boronic acids
- 7. Diethanolamine esters as boronic acid surrogates8. Q&A

QUALITY CONTROL OF BORONIC ACIDS

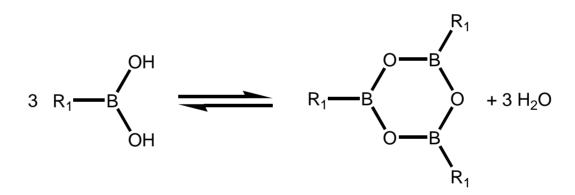
Quality control: what is really in there?

A "classical" organic product contains the desired product + impurities and solvents

- Purity by HPLC or GC
- Assay with a standard by HPLC or GC

A boronic acid product contains the boronic acid, but also possibly water, the boroxine (anhydride), and some boric acid !

➤w/w analysis is a nightmare !

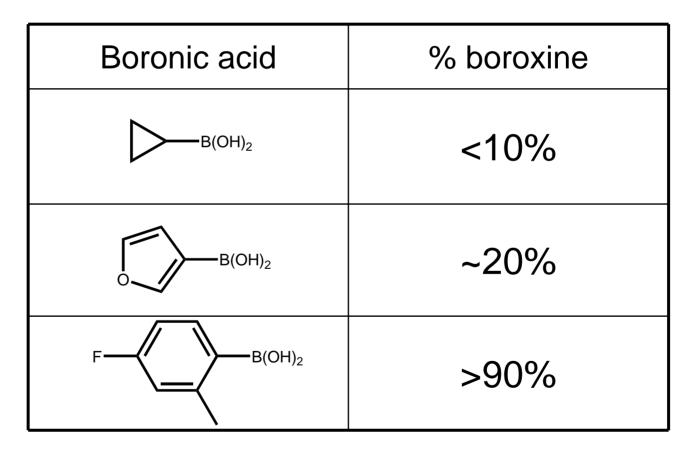


ontr

QUALITY CONTROL OF BORONIC ACIDS

Boroxine: an inevitable companion

A boronic acid is in equilibrium with its cyclic anhydride (boroxine)


Even at room temperature, %boroxine varies between 0% and 100% depending on R_1 , crystallization conditions, drying conditions...

A

QUALITY CONTROL OF BORONIC ACIDS

Boroxine: an inevitable companion

contr P e D Q 34

ontr

Ö

P

5

QUALITY CONTROL OF BORONIC ACIDS

w/w assay by titration with NaOH: routine... but meaningless

- Does not differentiate boronic acid and boric acid
 - Boroxine readily reverts to boronic acid during the titration, thus increasing the assay results
- Assay is often >100% (up to 120%)
 Low quality material can assay >100% !

contr

B

DUa

QUALITY CONTROL OF BORONIC ACIDS

w/w assay by titration with NaOH: routine... but meaningless

For a boronic acid with MW=150g/mol

Composition	NaOH titration result	
100% boroxine	113.6%	
90.5% boronic acid 9.5% boric acid	113.6%	
70.7% boronic acid 17.7% boric acid 11.6% water	113.6%	

contr

NT N

e D C

37

QUALITY CONTROL OF BORONIC ACIDS

Other analytical difficulties

- KF titration does not work (drives dehydration, boronic acid can oxidize)
- Melting point is unreliable (usually only mp of the boroxine is observed)

QUALITY CONTROL OF BORONIC ACIDS

<u>Consequences</u>

- Poor quality control unacceptable for critical raw materials
- Potential variability between suppliers
- Misadjustment of stoichiometry in the subsequent reactions

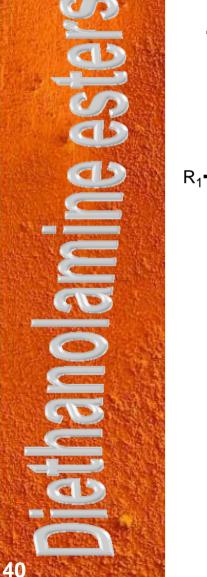
 impurities, extra costs

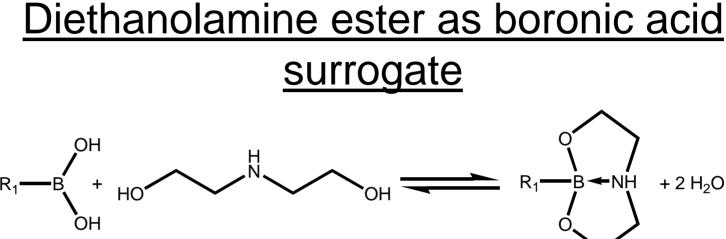
What is the solution ?

contr

E

Bug


90)


C

AGENDA

- 1. Minakem an overview
- 2. Boronic acids : a valuable tool for the chemist
- 3. Boronic acids synthesis
- 4. Borylation of lithiated species
- 5. Borylation of organomagnesium species
- 6. Quality control of boronic acids
- 7. Diethanolamine esters as boronic acid surrogates8. Q&A

QUALITY CONTROL OF BORONIC ACIDS

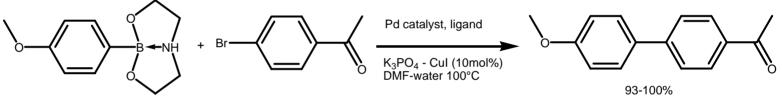
- Stable solid, does not oxidize or hydrate
- Readily reverts to boronic acid in acidic aqueous solution
 - Can be used as HPLC standard

DIETHANOLAMINE ESTERS AS BORONIC ACID SURROGATES

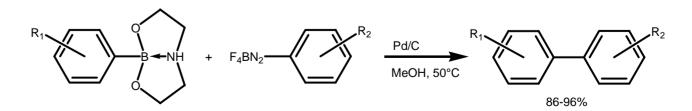
Use as "hidden" boronic acid

Convenient procedure :

- 1. Dissolve in aqueous HCI → reverts to boronic acid
- 2. Extract with organic solvent (MTBE, MeTHF, ...)
- 3. Proceed with coupling reaction


Perfect control of stoechiometry !

DIETHANOLAMINE ESTERS AS BORONIC ACID SURROGATES


Direct use in cross-coupling reactions

With aryl bromides :

42

With diazonium tetrafluoroborates, using Pd/C, and no base :

90)

C

AGENDA

- 1. Minakem an overview
- 2. Boronic acids : a valuable tool for the chemist
- 3. Boronic acids synthesis
- 4. Borylation of lithiated species
- 5. Borylation of organomagnesium species
- 6. Quality control of boronic acids
- 7. Diethanolamine esters as boronic acid surrogates8. Q&A