
Azide Synthesis in Microstructured Flow Systems

gwille@sial.com

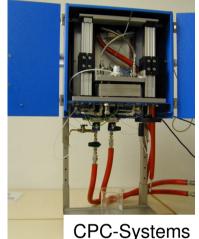
© 2010 Sigma-Aldrich Co. All rights reserved.

SIGMA-ALDRICH®

Sigma-Aldrich – The company

- Headquarter in St. Louis, Missouri
- Revenues (2009) > 2.1 bln. \$
- ~ 8'000 Employees world wide
- > 1 Million customers
- Custom synthesis executed by SAFC

St. Louis (USA)


Buchs (CH) Center of Excellence, Organic Technologies & Synthesis ²

© 2010 Sigma-Aldrich Co. All rights reserved.

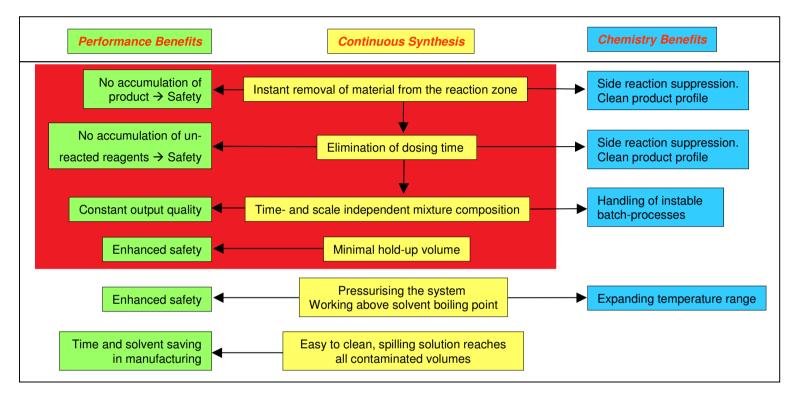
SIGMA-ALDRICH[®]

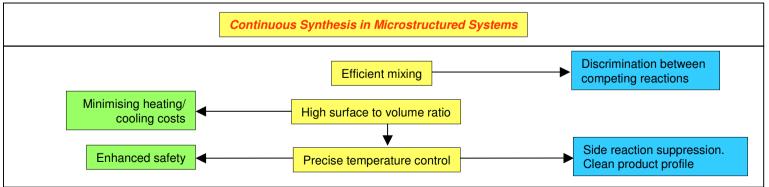
Flow Chem history at Sigma-Aldrich

- Purchase of an integrated MRT-system 2004 Idea: Product profile improvement by better heat management
 - Corporate production of retinol (vitamin A alcohol, sales 230 k\$/a)
 - Enabling technology for exo-methylene cyclopentane
 - Further technology development (glass reactors) with LTF company (Germany).
 - 2007: Microreactor Explorer Kit (19979) launched

Several SAFC custom synthesis projects done

today


Production of > 65 catalogue products


- Personal situation: ۲
- Two labs in Buchs for Flow Chem R&D (3 FTE)
- Technology established in small scale dept., (CH), SAFC (CH) and kg-scale lab (USA)

© 2010 Sigma-Aldrich Co. All rights reserved

SIGMA-ALDRICH[®]

Learning curve, MR technology benefits

4

SIGMA-ALDRICH®

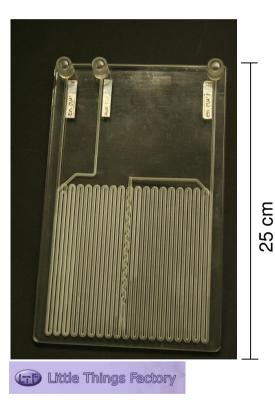
Cornerstones

- Pragmatic approach
- 1st Batch campaign typically 100 500 g (later up to kg-scale)
- Focus on synthesis in liquid/liquid systems
- Reaction mixture must stay into solution
- Heat management & safety play important roles
- Multi purpose equipment for synthesis and work-up
- Choice of executed reactions

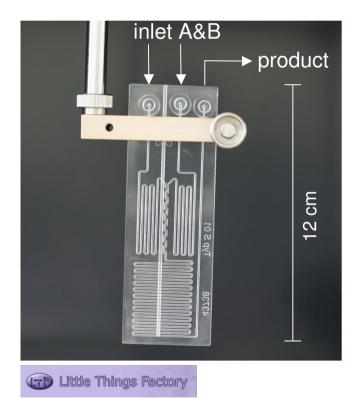
Grignard	Carbocyclisation
DAST synthesis	BuLi handling
Epoxidations	Bromine handling
Diazo acetate synthesis & handling	Azide synthesis
Selective Boc introduction	

SIGMA-ALDRICH®

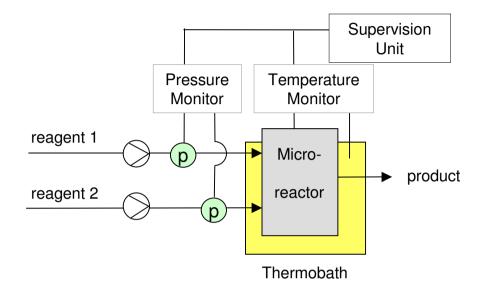
MR systems at Sigma-Aldrich (Swiss site)


Stainless Microreactor

Type CYTOS Channel width ca. 0.2 mm Active temperature control

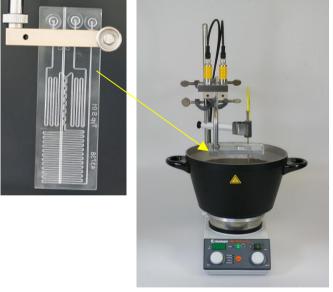

Glass Mesoreactor

Type XXL Channel width 2 mm 15 mL RTU

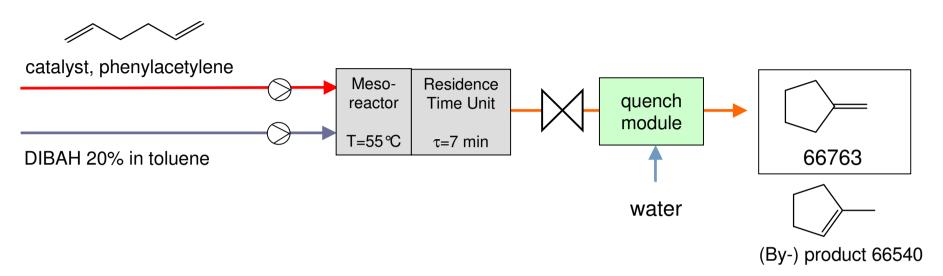


Glass Microreactor

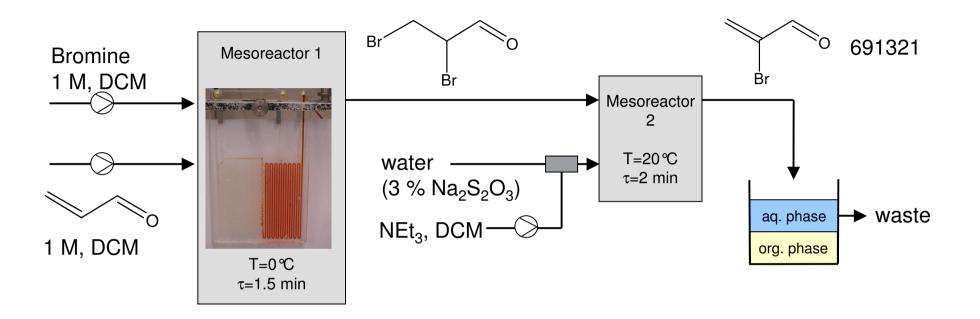
Type S02 Channel width 0.5 – 1 mm Inner volume ca. 1 mL



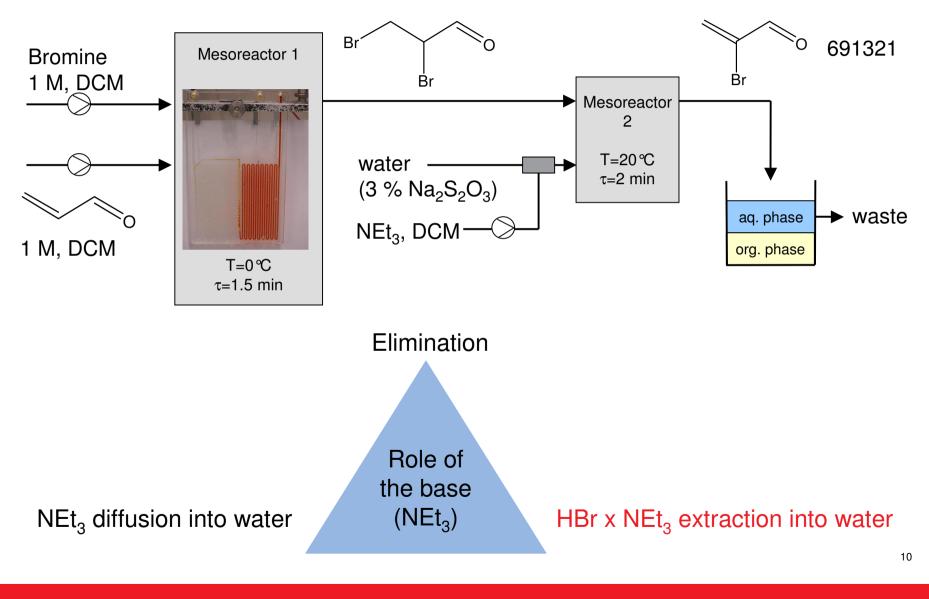
Microreactor Explorer Kit – product 19979



- All-in-one solution*
- Built from commercially available elements
- Microreactor type S02 & rotary piston pumps
- Suitable for kg-campaigns
- In house use at Sigma-Aldrich
- *) Thermobath not included

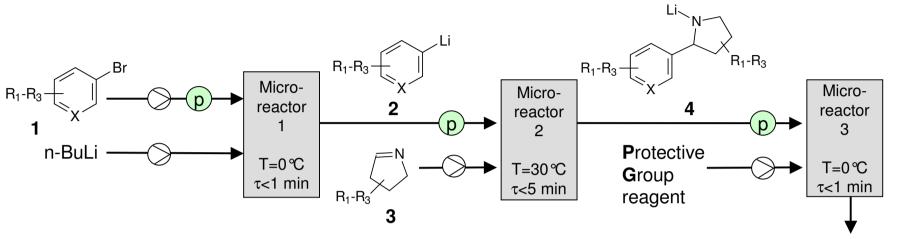


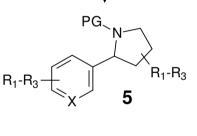
Early example I, Methylene cyclopentane


- Product 66763 isomerises on extended contact time product/catalyst
 - \rightarrow Instant catalyst quench essential
- Specification of product **66763**: Purity > 99%
- By-product has very similar b.p. (distillation problem)
 - \rightarrow Raw material must be pure
- Output > 4 kg/24h
- Importance of instant quench & continuous extraction

Early example II, Handling of bromine

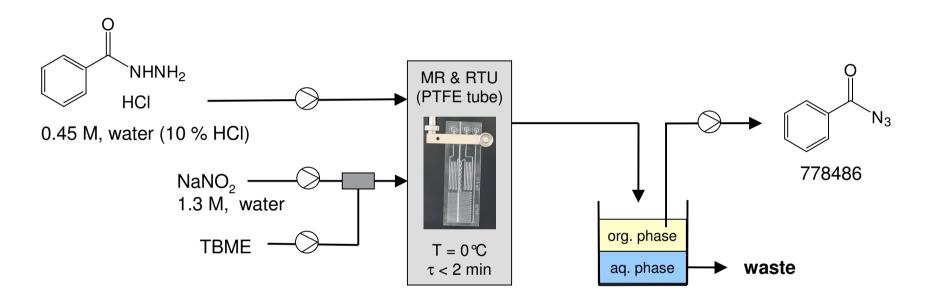
- Complete conversion
- Yield ca. 50%, output 350 g/24h
- DSC analysis intermediate 691321 (1:1 DCM mixture) 641 J/g, left limit 88° C
- Elimination time with aq. KOH (heterogen.) >20 min (to long)


Early example II, Handling of bromine

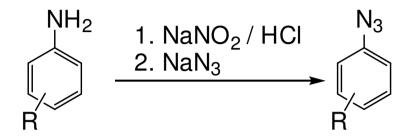

© 2010 Sigma-Aldrich Co. All rights reserved.

SIGMA-ALDRICH®

Early example III, Li-R interception



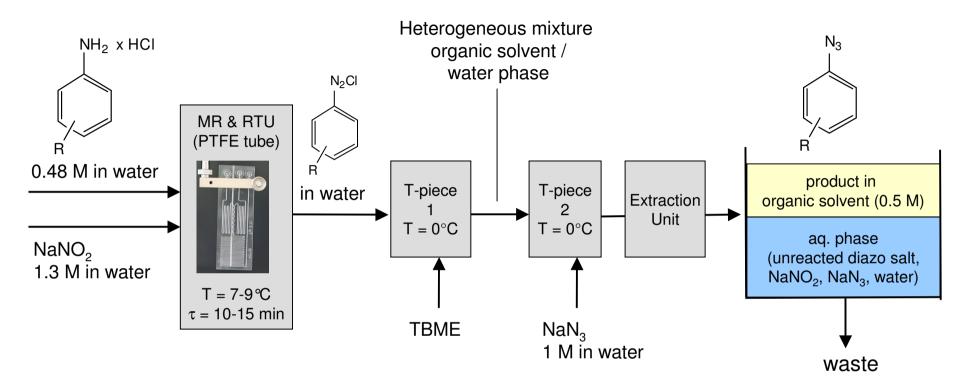
- Yield 55%, output > 3 kg/24h
- Campaign in a Corning G1 3-stage system, tests in S02 MR
- Impurity profile improved
 - \rightarrow Elimination of dosing time suppresses side reactions
- Batch yields changing
 - \rightarrow Mixture from MR comes in constant quality
- Work-up needed before running stage 4


Curtius reaction II, benzoyl azide

Product idea: Lowering the potential of the azide by making it a solution

- Yield 77% → Output 730 g/24h
- Concentration estimation by NMR \rightarrow fine tuning by TBME flow modification
- All inorganic compounds extracted (purity > 96%, LC)
- Final sln. 0.5 M, stable up to 75° C (Radex), energy 250 J/g (DSC)

BAP – Buchs Azide Process


Project target

- Product: 0.5 M in sln. in organic solvent
- Only extraction accepted for post processing
 - \rightarrow Product must be the only extricable compound (org. solvent)
- Process and product safety (United Nation criteria)

13

BAP – Buchs Azide Process

- Major problem: Solid formation
 - \rightarrow Adding alcohols or higher dilution
- Standard flow rates: 5.3 mL/min (aniline), 2.5 mL/min (TBME)
- Intensive gas formation on stage 2
- Aq. phase may be contaminated with HN₃

Buchs Azide Process - Results

Halides					
	Yield (%) Purity (min. %)		Additive	Output (g/24 h)	SIAL no.
o-F	40	96	No, but ISQ	270	778842
m-F	32	95	No, but ISQ	250	779814
p-F	70	99	No	415	779253
o-Cl	72	99	No	480	778958
m-Cl	71	99	Yes	505	779938
p-Cl	71	99	No	475	727482
o-Br	96	99	Yes	780	779318
m-Br	81	98	Yes	780	779083
p-Br	81	98	Yes	675	779377
o-l	17	97	Yes	255	779059
m-l	55	99	Yes	740	778516
p-l	68	95	Yes	960	779482

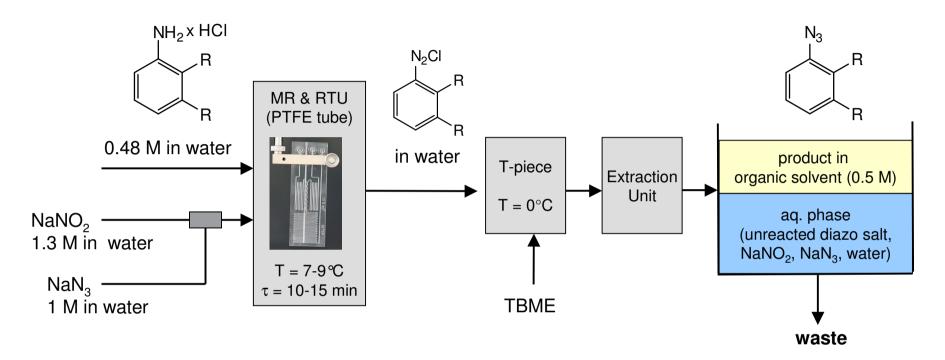
• No incorporation of chloride or OR into the product

Buchs Azide Process - Results

Rest					
	Yield (%) Purity (min. %)		Additive	Output (g/24 h)	SIAL no.
o-CH3	o-CH3 48 91		No	300	779164
m-CH3	47	97	No	285	778613
p-CH3	47	99	No	630	772466
o-OCH3	72	95	Yes	590	779261
m-OCH3	60	97	Yes	480	778729
p-OCH3	32	91	No	210	727431
o-CF3	82	97	No	570	779520
m-CF3	94	99	No	570	779415
p-CF3	67	95	Yes	395	779199
o-CO2Me	47	99	No	300	779741
m-CO2Me	71	98	No	335	779644
p-CO2Me	50	96	No	525	779598

• Flow rates doubled for 772466 \rightarrow Stage 1 temp. jumped to 9-11 °C

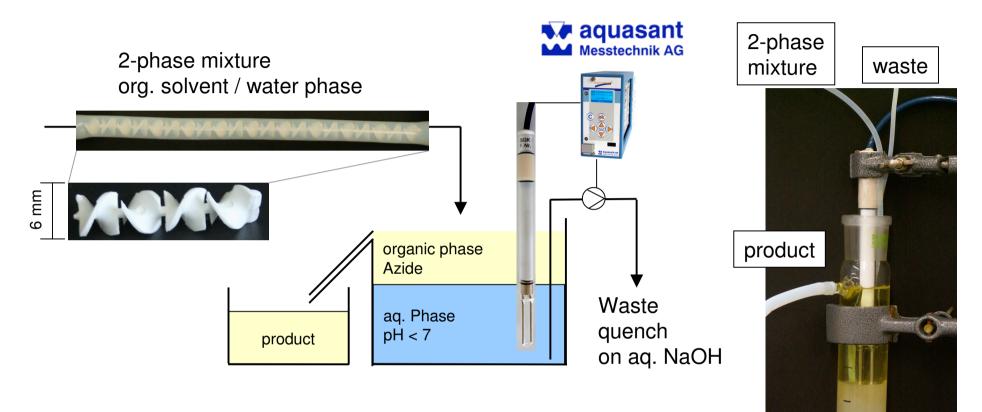
Buchs Azide Process - Results


	Yield (%)	Purity (mind. %)	Additive	Output (g/24 h)	SIAL no.
Phenyl, TBME	59	98	No	230	727490
Phenyl, 2-Me-THF	72	98	No	355	778583

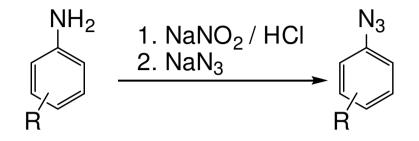
	Yield (%)	Purity (mind. %)	Additive	Output (g/24 h)	SIAL no.
o-CO2H	24	97	No	175	727458

Final concentration was set to 0.15 M because of limited solubility

 \rightarrow General problem for acids


BAP – Buchs Azide Process, ISQ variation

- Solid formation problem solved
- Low yields


	Yield (%)	Purity (mind. %)	Additive	Output (g/24 h)	SIAL no.
o-F	40	96	No, but ISQ	270	778842
m-F	32	95	No, but ISQ	250	779814

BAP – Buchs Azide Process, work-up

- Aq. phase max. volume 100 mL
- Phase interface detection by impedance measurement
- Mixer built from commercially available elements (problem: cleaning)

Buchs Azide Process - Summary

- 26 derivatives synthesised
- Yields 17 96 %
- Most products came in > 95 % purity (only one extraction)
- Solutions stable up to 80°C (Radex), energy < 500 J/g (DSC)
- Robust process (also tolerant towards pulsation)
- Output (sln.) $3.5 4.0 \text{ L} / 24 \text{ h} \rightarrow \text{max}$. 5 mol / 24 h
- Potential for output improvement given
- Product sln. suitable for further processing

Flow Chem at Sigma-Aldrich - Summary

- Flow chemistry in MR systems used to make commercial products
- Enabling technology
 - \rightarrow Rapid access to the safety-critical processes
- Development time shortened by elimination of interim thermo analysis
- Instant conversion of intermediates & small hold-up volumes are strong points

- Trend to two- or more stage systems
- Future focus on continuous work-up (product volume minimisation)

Thanks to the colleagues

- Gökcen Yilmaz
- Sascha Bollhalder (DSC and Safety analysis)

Literature

M. Weber, G. Yilmaz, G. Wille *Chemistry Today*, **2011** (in press)

