

Biocatalysis and bioprocessing -

Genes to GMP

Prof. Tom Moody

www.almacgroup.com

An integrated group of biologists and chemists who:

Discover. New enzyme discovery platforms

Screen. Screen for and utilize enzymes in processes

Evolve. Improve properties of enzymes (process efficiency, economics)

Supply. Manufacture (immobilised) enzymes and enzyme-derived products

Key Expertise:

- Enzyme discovery (metagenomics)
- Building panels of enzymes
- Active site modelling and enzyme design
- Evolution tools (saturation mutagenesis, random mutagenesis)
- Fermentation development & scale-up
- Enzyme immobilization & supply
- Bioprocess development and manufacture of chemicals
- Metabolite synthesis

[®]Reaction Experience

Decades of process experience....

Reaction Experience					
Alkylation	Enzyme immobilisation	Nitrilase reactions			
Aminoalkylation	Heck Reaction	Optical Resolution			
Asymmetric Synthesis	Hydrogenation	Organolithium Chemistry			
Biotransformations	Hydrolase bioresolutions	Organometallics			
Base Catalysis	Grignard Reactions	Organosilicon Chemistry			
Transfer Hydrogenation	KRED bioreductions	Oxidation			
Condensations	Reductions	P450 Biooxidation			
Dealkylation	Leuckart Reaction	Ritter Reaction			
Dieckmann Condensation	Methylations	Stereoselective Reactions			
Diels Alder Reaction	Michael Reaction	Suspension polymerisation			
Enzymatic Resolution	Mannich Reaction	Transaminase bioreactions			

...Coupled with biocatalysis manufacturing technologies

[•]Manufacturing

Ideal tank sizes to develop and manufacture Multi-Ton scale intermediates (biocatalytic processes & immobilisation)

Multi-purpose Pilot Plant

- 7 reactors from 100 to 1,000L
- Total capacity of 2,600L
- Glass-lined, Hastelloy and Stainless Steel

Manufacturing Plant

- 13 reactors from 2,200L to 6,300L
- Total capacity of 45m³
- Glass-lined and Stainless Steel

Work-up

- Centrifugation from 1.0 to 2.5 tonne
- Driers: 0.5 to 0.6 tonne

A Member of the Almac Group

[°]Almac Technology

[°]Almac Technology

kg to tonne manufacture

Specific Enzyme Panel Building

Bespoke enzyme panel

- Bespoke enzyme panels can be developed
 within weeks using Almac bioinformatics
 GIDS platform
- GIDS gene informed database searching
- Tailormade panel of enzymes expressed in
 96 well plate format
- 1 enzyme only possible; typical is 25, 50 or
 96
- 1g to tonne supply of enzyme available

10	R	E	D	

•	In silico	design	of 50	IRED	enzyme	library
---	-----------	--------	-------	------	--------	---------

- Gene synthesised, cloned and expressed •
- Screened against customer substrate hits found

IRED no.		% HPLC peak area @ 260		% HPLC peak area of			
		nm		product enantiomers			
		Product	SM	(S)	(R)		
	3	9	91	54	46	8	
	5	2	98	0	100	100	
	8	77	23	89	11	78	
	9	2	98	13	87	74	
	12	3	97	100	0	100	
	16	3	97	77	23	54	
	20	100	0	100	0	100	
	26	1	99	89	11	78	
	27	31	69	92	8	84	
	28	8	92	0	100	100	

CRED enzymes

CREDs

Reaction mechanism

¹³ CREDs

Bioreduction

Chemocatalysis failed to deliver<u>new</u> specification of >99.2%ee

- Project for a Japanese Customer
- Building block for Phase III API
- Specification: >99% (GC), max. 0.1% for unknown imps, up to 0.5% named imps; >99% ee
- No scaleable biosynthetic route to intermediate
- Fermentation scale-up to 1000s of litres
- Ultimately tonne process required
- <<\$1000 / kg

Bioreduction

CRED Screening:

- A161 identified as hit with >99.5% ee
- Enzyme is NADH-dependent
- GDH/glucose used for co-factor recycle

Process Optimisation:

- 5% DMSO co-solvent, pH 7.0, 30 deg C
- 0.1% w/w of Iyo cell free extract CRED/GDH sufficient
- 180 g/L substrate >99.8% converted within 12 hours
- Workup by extraction with MtBE; crude product telescoped into next step

Bioreduction

ΩН

ΟН

from POC sample to commercial output

Process modifications after pilot batch experience: Step 1: switched from Meldrum's acid to methyl potassium malonate SM Step 4: switched from n-BuLi to n-HexLi, relaxed specification Step 5: improved hydrolysis protocol

ERED enzymes

Aromatisation Using Ene Reductase Enzymes

Paul P. Kelly^a*, David Lipscomb^a, Derek J. Quinn^a, Ken Lemon^a, Jill Caswell^a, Jenny Spratt^a, Birgit Kosjek^b, Matthew Truppo^b and Thomas S. Moody^a

^aAlmac, Department of Biocatalysis Isotope Chemistry, 20 Seagoe Industrial Estate, Craigavon, BT63 5QD, Northern Ireland, United Kingdom, Phone: +44 (0) 28 3833 2200; e-mail: <u>paul.kelly@almacgroup.com</u>

^bMerck & Co., Inc., Department of Process Research, Merck Research Laboratories, P.O. Box 2000, Rahway, New Jersey 07065, USA

EREDs for Phenol/Naphthols (Adv. Synth. Catal.)

 Conversions of tetralones to naphthols in absence of reduction target (9a) confirmed up to >99% in some cases

- ERED 69 and 7-MeO-Tetralone selected for optimisation and scale up to ~1g to follow
- Additional examples of cyclohexenones to phenols to be included

²¹**ERED**s

Analysis by Fluorescence

- Red-orange precipitate in many wells
- Others clear/yellow
- 200 µl of sample taken
- 22 µl of 1M NaOH added
- Observed under UV (365nm)
- Read by fluorescence plate reader
 - $-\lambda ex = 355 \text{ nm}, \lambda em = 460 \text{ nm}$
 - Gain set to 82.5% for 5 mM 2-Naphthol
- Reads baselined to empty vector control

²²EREDs – Phenolic preparation

P450 enzymes

²⁴**Biooxidation**

Biooxidation

Customer project

- P450 project •
- Enzyme screening and hit ID, enzyme engineering •
- Reaction optimisation and scale up from 100 mL to 100 L to 1m³ •

R

R

Reaction engineering ٠

R₁

Biooxidation

Two Step P450 Oxidation

Terpenoid \rightarrow Oxidation Product 1 \rightarrow Oxidation product 2

26

- P450 reaction scaled up to 100 L
- Isolation of ~ 100g desired oxidation products
- NADPH recycling system used
- 1 m3 scale-up successful
- Next scale 6m3 in a chemical reactor
- Fermentation for catalyst supply 15m³ ALMAC

Biooxidation

P450 Oxidation

Modular Project Deliverables

- P_{450} and Streptomet^TM screen
- Active P₄₅₀ identified
- P₄₅₀ ALM-CYP18 identified
- Evolution underway
- Biooxidation scaled to 5 L in a fermenter

Biooxidation

TAm enzymes

Transaminase

Preparation of enantio-enriched $\alpha\text{-chiral}$ primary amines

a) Kinetic resolution

30

a) Kinetic resolution starting with racemic amines (limited by 50% yield)

prochiral ketone

 b) Asymmetric synthesis of prochiral ketones (theoretically 100% yield possible)

Transaminase

31

Strategy used at Almac to remove inhibitory side products

Transaminase - Cascade

- Conclusion
- TAm is active with substrate (2) (5-30 g/L)
- Inhibition with L-alanine (70 % residual activity at 10 g/L), and pyruvic acid (75 % residual activity at 50 mM)
- TAm maximum apparent specific activity 0.35 U/mg_{CFE} (at 30 g/L substrate (2)), and 0.1 U/mg_{CFE} (at 7 g/L substrate (2))

5/14/2016

Transaminase - Cascade

(3)

NADH

open vessel with pH control 10 % enz, 0.04 % PLP, pH 7.4, 63% conversion in 42 h

33

5 g scale, 25 g/L L-AA Closed vessel, no pH control 20 % enz, 0.04% PLP, pH 7.14 (initial), pH 7.54 (final) 97% conversion by HPLC in 18 h

5/14/2016

Drop-wise addition of (2) and pyruvic acid with pH control and (3) - 5 g reaction completed in 16 h

NAD⁺

ОН

(4)

Transaminase - DKTAm

• Project Aim:

34

- process optimisation of the transamination to afford quantitative yield while maintaining ee of >95%
- Development of a DKTam
- TAm immobilised

³⁵ **Directed Evolution**

Substrate specific mutagenesis by protein modelling

³⁶ **Directed Evolution**

Combination of techniques

 \Box 72 Mutants screened => first round improvement: 25 x wildtype reaction

ChemComm

COMMUNICATION

Cite this: Chem. Commun., 2015, 51, 17225

Received 13th August 2015, Accepted 23rd September 2015 A rapid, sensitive colorimetric assay for the highthroughput screening of transaminases in liquid or solid-phase[†]

5 D. Baud,^a N. Ladkau,^a T. S. Moody,^b J. M. Ward^c and H. C. Hailes*^a

 O_2N 1 NC 12 O_2N 13 NH_3CI NH_3CI

Fig. 2 Assay coloration when using amino donors 1, 12 and 13 with CV-TAm and acceptor 7.

US process intensification

³⁹Ultrasound

Acknowledgement Prof. T Mason, Uni. of Coventry

UNSYMMETRIC COLLAPSE Inrush of liquid from one side of the collapsing bubble produces powerful jet of liquid targeted at surface

- Lignocellulose, cell, algae weakening
- (Bio)polymer degradation
- Crystallization
- Cell permeation
- Emulsification

IN THE CAVITY extreme conditions on collapse 5000°C and 2000 atmospheres

IN THE BULK MEDIA intense shear forces

- Lignocellulose, cell algae weakening
- Cell permeation
- Biocatalysis enhancement
- Surface attrition
- Surface activation
- Improved heat/mass transfer
- Emulsification

Ultrasound

Acknowledgement Prof. T Mason, Uni. of Coventry

UNSYMMETRIC COLLAPSE Inrush of liquid from one side of the collapsing bubble produces powerful jet of liquid targeted at surface

IN THE CAVITY extreme conditions on collapse 5000°C and 2000 atmospheres

IN THE BULK MEDIA intense shear forces

- Lignocellulose weakening
- (Bio)polymer degradation
- Crystallization
- Cell permeation

- Lignocellulose weakening
- Cell permeation
- Biocatalysis enhancement
- Surface attrition
- Surface activation
- Improved heat/mass transfer

Video courtesy of University of Twente, Netherlands. and Shimadzu Europa GmbH, Duisburg, Germany

⁴¹ **Process Operation**

Process intensification

- Process being developed for multi-tonne, Step 2 of a 5 step process
- Process scale-up resulted in mixing problems
- Poor performance for reaction time
- **Options?** Enzyme evolution or Application of US or both

Process intensification

Pictures courtesy of Celbius

Image: Transducers bondedMedium into deliver ultrasound ALMAC

Immobilised enzymes

47 Immobilisation

48 Immobilisation

- Optimal for working in biphasic systems or aqueous systems
- Resins are mechanically stable
- Flow systems or CSTR
- Multipoint covalent binding
- Form very stable covalent linkages with different protein groups
- Enzyme classes immobilised

49 Immobilisation

5/14/2016

Immobilisation - Turbo Beads

- Enzymes immobilised on carbon coated nanoparticles
 - Metal coated with outer layer
 - Functionalised
 - Enzyme attached

Ease and **quick** recovery of immobilised catalyst by use of magnet

• Enzyme classes immobilised

Bioconjugate Chem. 2014, 25, 677-684

API Testing – Enzyme Removal & Detection

OPRSD-

Case Studies Illustrating a Science and Risk-Based Approach to Ensuring Drug Quality When Using Enzymes in the Manufacture of Active Pharmaceuticals Ingredients for Oral Dosage Form

Andrew S. Wells,^{*,†} John W. Wong,^{||} Peter C. Michels,[¶] David A. Entwistle,[‡] Keith Fandrick,[■] Gregory L. Finch,[⊥] Animesh Goswami,[#] Heewon Lee,[■] Stefan Mix,[●] Thomas S. Moody,[●] Long Pang,[‡] Robert K. Sato,[‡] Nicholas J. Turner,[□] and Timothy J. Watson[∇]

•Almac, Department of Biocatalysis and Isotope Chemistry, 20 Seagoe Industrial Estate, Craigavon BT63 5QD, Northern Ireland United Kingdom

Assay Range		Comment		
NanoOrange®	10 ng/mL to 10 µg/mL	Low protein-to-protein signal variability Detection not influenced by reducing agents or nucleic acids		
BCA 0.5 μg/mL to 1.5 mg/mL Not compa		Samples must be read within 10 minutes Not compatible with reducing agents		
Bradford	1 µg/mL to 1.5 mg/mL	Proteins precipitate over time High protein-to-protein signal variability Not compatible with detergents		
Lowry 1 µg/mL to 1.5 mg/mL		Lengthy, multistep procedure Not compatible with detergents, carbohydrates or reducing ager		
Absorbance at 280 nm	50 µg/mL to 2 mg/mL	High protein-to-protein signal variability Detection influenced by nucleic acids and other residues		

	Example 3:	Example 4:	Example 5:	Example 6:
	API 3	API 4	API5	API 6
Enzymatic step	Pre RSM, C-C bond	Pre RSM, ketone	Post RSM, Alcohol	Pre RSM Ketone
	formation	reduction	oxidation	Reduction
Stage in synthesis	Several steps before API	Several steps before API	Penultimate step	Several steps before API
Enzyme type	Enzyma (Calls from E	KRED (liquid	KRED (whole cell	KRED (Dry powder
	Enzyme (Cetts from E.	formulation from in E.	formulation produced in	produced from E. coli
	coli fermentation)	coli fermentation)	Gluconobacter oxydans)	fermentation)
Control strategy	Test for total proteins,		Test for total proteins,	Test for total
	DNA, endotoxins and	T . (DNA, endotoxins and	proteins;
	microbiological residues;	Test for total	microbiological	in-process testing;
	demonstrate fate and	residue specifications	residues; demonstrate	demonstrate fate and
	purge; no enzyme	for API	fate and purge; no	purge;
	residue specifications for		enzyme residue	no enzyme residue
	API		specifications for API	specifications for API

Biocatalysis and more

Where we are

RANT TO DIS 1608

55

Prof. Tom Moody

Head of Biocatalysis & Isotope Chemistry

Phone: +44 28 3836 5503

Email: <u>tom.moody@almacgroup.com</u>

ALMAC

Department of Biocatalysis & Isotope Chemistry

Seagoe Industrial Estate Craigavon, N. Ireland BT63 5QD UK

biocatalysis@almacgroup.com

www.almacgroup.com

