THE FUTURE OF THE CHEMISTRY:

CONTINUOUS FLOW REACTIONS

BASEL 2016

CHIMIE FINE

CONTINUOUS INNOVATION FOR FINE CHEMICALS

CONTINUOUS FLOW REACTOR

The continuous flow reactor is a safe system, running chemical reactions in reduced volume with an efficient heat and mass transfer

PROCESS INTENSIFICATION:

Temperature, Pressure, Molar Concentration

<u>Micro and Mini Reactors</u> Laboratory **_____** Industrial

CONTINUOUS FLOW REACTION

COMPETITIVE ADVANTAGES vs BATCH

- Faster reactions: reduce reaction times down to 1 min
- Safer reactions
- Less energy, solvent and reagents consumption
- Lower waste management
- Better control of highly exothermic reactions
- Ability to manage very high pressure and temperature reactions
- Ability to manage highly toxic and corrosive reagents
- Rapid reaction optimization: easy scale-up
- Low capital investment
- Miniaturization

INNOVATION

La Mesta has developed a proprietary Plug Flow Reactor called RAPTOR

RAPTOR is a tubular continuous			
agitated reactor	, equipped with		
heating/cooling	jacket and a		
longitudinal	shaft having		
impellers.			

Plug Flow Reactor has a series of thin coherent "plugs", each with an uniform composition, travelling in the axial direction, perfectly mixed in the radial direction but not in the axial direction. Each plug is considered as a separate entity, without a forward or a back mixing.

Temperature	-100°C +300°C
Pressure	300 bar
Heat exchange (area/vol.)	150 m²/ m³
Residence Time	10 sec to few min
Flow rate	5 to 400 liters / h
Stirring	1500 rpm

- Gas / Liquide / Solid phase reactions
- Handling of toxic or highly corrosive reagents (Triflic acid, CO, Phosgene)
- Highly exothermic, high temperature or cryogenic processes
- Viscous reactions
- Solid suspension up to 30% (as starting materials or during reaction)

5 Raptors are in place:

- **#1** (hastelloy) : flow rate 150 liters/h
- **#2** (ss) : flow rate 40 liters/h
- **#3** (hastelloy) : flow rate 60 liters/h
- #4 (hastelloy) phosgene chemistry: flow rate 60liters/h
- #5 (hastelloy) : flow rate 400liters/h

RAPTOR CHEMISTRY

MULTIPURPOSE EQUIPMENT

✓ Ammonolysis

La mesta

- ✓ Carbonylation
- ✓ Condensation
- ✓ Decarboxylation
- ✓ Grignard Chemistry
- ✓ Hydrogenation
- ✓ Isomerization
- ✓ Oxidation
- ✓ Phosgene Chemistry
- ✓ Reductive amination

HAZARDOUS REACTIONS

ra mes.

Hazardous Reaction: Uncontrolled CO₂ gas evolution

Raptor is safe: small reaction volume and up to 300 bar

HAZARDOUS REACTIONS

OXIDATION with H₂O₂

Temperature	70°C
Pressure	10bar
Reaction Time	1 min
Residual H ₂ O ₂	0% w/w

CARBONYLATION

La mesta CHIMIE FINE

Starting Material for API in cGMP

Temperature	45°C
Pressure CO	45 bar
Alcohol in CH ₂ Cl ₂	40% w/w
Residence Time	30 sec
Triflic acid	50% w/w
Yield	84%

CARBONYL REDUCTION

	Batch	Raptor
Pressure H_2	10 bar	70 bar
Temperature	90°C	170°C
Reaction Time	12h	1min
Quality (Color)	Not OK (add. step)	OK

MULTI STEPS SYNTHESIS

La mesta

*RCOCI

 \cap

Cyanohydrin in RAPTOR

Reaction control

Raptor: 15 secondes \rightarrow Kinetic control \rightarrow 50-50% isomers

Batch: 6 hours \rightarrow Thermodynamic control \rightarrow 60-40% isomers

CRYOGENIC IN CONTINUOUS

Continuous flow reactor RAPTOR for cryogenic reactions:

- Easy to cool down to -90° C <u>but most of the time not needed;</u>
- Short reaction time: reaction selectivity and quality improvement;
- Use of highly reactive compounds;
- <u>Two raptors in line for consecutive reactions (cryogenic + quenching);</u>

CRYOGENIC IN CONTINUOUS

La mesta

Very low temperature is not necessary in continuous !

PHOSGENE REACTIONS

PHOSGENE GENERATOR

- **Process:** $CO + Cl_2 + Active Carbon at 150° C$
- Production: up to 12kg / hour

up to 40kg / hour

• **Quality:** CCl_4 max 49-56ppm

No Phosgene on stock

On demand generation and continuous consumption

PHOSGENATION

La mesta

Last step of an API synthesis performed under cGMP

DOWNSTREAM IN CONTINUOUS

PROVED the EFFICIENCY of the RAPTOR

□ NEXT STEP: DOWSTREAM in CONTINUOUS

□ Washing – Separation in Continuous

Distillation in continuous (THIN FILM EVAPORATOR)

Crystallization and filtration in batch

DEDICATED AREA TO THE CONTINUOUS PROCESS

□ WORKSHOP is in PROGRESS (SEPT. 2016)

Annual production 60 MT / year

New continuous workshop in 2016

CONTINUOUS LAYOUT

CONTINUOUS VS BATCH

La mesta

	BATCH	CONTINUOUS
Annual production	60 MT	
Equipment used	Vessel (6 rm ³) + tanks	Raptor (0,001rm ³) + tanks
Duration of Production	25 weeks	6 weeks
Productivity	42 kg/h	100 kg/h
Productivity x week	2,4 MT	6 MT
Reaction temperature	10 – 15°C	45°C
Toluene	3,5 vol	1,75 vol
Water (washing)	4 vol	2 vol
Excess CMS & TEA	30%	10%
Product Quality	Orange (purification step needed)	Pale yellow
Disposal	6,2 kg /kg	3kg / kg

Standard Chemistry
Raptor Chemistry

THANK YOU FOR YOUR ATTENTION

CHIMIE FINE

LA MESTA CHIMIE FINE S.A.S.

1336 route de l'Esteron 06830 GILETTE FRANCE Tel : +33 492 08 53 00 Fax : +33 492 08 53 40 info@la-mesta.com

www.la-mesta.com