# Asymmetric Hydrogenation: A Sustainable Technology for Pharmaceutical Manufacture

Presentation for the RSC Symposium 2016: Survival in the Speciality Chemicals Industry


1st June 2016

$$CH_3O$$
  $O$   $CI$   $F$   $NHBoc$   $CO_2H$   $NHMe$ 

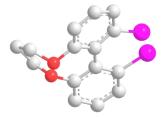
Dr Ian C. Lennon
Senior Vice President, Global Business Development
Chiral Quest Corp., Cambridge, UK
ilennon@chiralquest.com



#### **Outline of the Presentation**



- Short Introduction to Chiral Quest
- Asymmetric Hydrogenation Background
- Asymmetric Hydrogenation: A Sustainable Technology?
- Chiral Quest's Examples of Asymmetric Hydrogenation
  - Manufacture of Phenylalanines
  - Manufacture of Chiral Alcohols
  - Applications to Generic Pharmaceuticals
- Conclusions




#### **Background of Chiral Quest**

- 2000: Founded by Professor Xumu Zhang
- 2003: Chiral Quest's NJ R&D Lab (near Princeton) established
- 2005: Scale-up facilities, Chiral Quest Jiashan (near Shanghai)
- 2008: Chiral Quest Receives Series B Financing of \$13 m
- ❖ 2009: New Chiral Quest pilot plant opened May 2009 in Suzhou, Biobay
- 2012: Purchase of Jiang Xi Long Life Biopharmaceuticals Co. Ltd
- 2013: New R&D Laboratories in Suzhou opened and Series C Financing completed - \$23 Million
- 2013: Chiral Quest files a US DMF for Duloxetine and Sitagliptin Ints.
- ❖ 2014: New workshops complete and the current plant capacity is >310 KL.
- ❖ 2014: REACH registration for (S)-MMAA completed
- 2015: Chinese Drug Manufacture Permit obtained



# **Management Team**



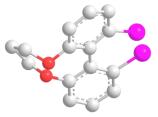
#### Dr James Wu, CEO

PhD Organic Chemist, SIOC. 10 years with GSK in Senior Management roles, 7 years with other Chinese companies (GM and CTO). Founder of Jiang Xi Long Life

#### Dr. Ian Lennon, Senior Vice President, Global Business Development

More than 27 years pharmaceutical industry experience, in process chemistry and business development, with Merck, Parke Davis, Chirotech, DowPharma and Dr Reddy's

#### Dr. Wenge Li, Vice President, Research & Development


Wenge has been with Chiral Quest since 2002 and has extensive experience in the application and development of asymmetric hydrogenation

#### Dr. Wenjun Tang, Senior Consultant

Research professor at SIOC, specialized in catalysis, synthesis and processes, 6 years pharmaceutical industry experience with Boehringer Ingelheim in process chemistry.



#### **Commercial Manufacturing Facility**





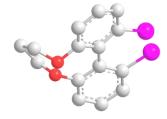
- Jiang Xi Long Life, located in Jiangxi Province, P.R. China.
- Wholly owned by Chiral Quest and has 208 employees



#### **Commercial Manufacturing Facility**



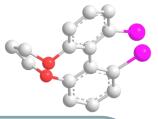







- Jiang Xi Long Life, located in Jiangxi Province, P.R. China.
- Wholly owned by Chiral Quest and has 208 employees

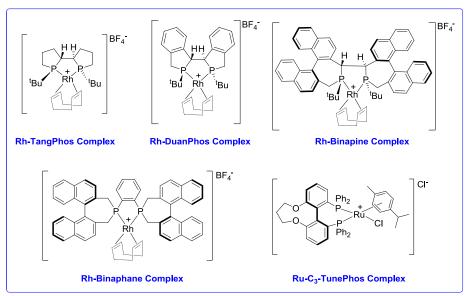



#### **New Chiral Quest Manufacturing Facility**



- Jiang Xi Long Life, located in Jiangxi Province, P.R. China
- ❖ >170 reaction Vessels (>310,000 L volume capacity)
- New workshop will open in March 2016 with 40 more vessels
- ❖ High pressure vessels (1 x 100 L, 2 x 500 L, 4 x 1000 L, 2 x 2000 L), up to 100 atm
- ❖ Temperature range from -80°C to 300°C (10 vessels for -80°C, 50-2,000 L)
- 4 distillation column towers (to 0.1mmHg)
- ❖ Licenses for Toxic chemicals including:NaCN, Cl₂, POCl₃, Cl-SO₃H,
  CICOOC₂H₅ and CH₃SO₂CI
- Long Life has Chinese High Tech Certification
- In 2015 Chinese Drug Manufacture Permit granted, by the CFDA
- This was a hardware and software audit that determined that the plant is capable of cGMP manufacture




# **Expertise in Asymmetric Hydrogenation**



#### 11 Hydrogenation reactors with high pressure capability (100 L to 2000 L)

- 2 x 2,300 L, 1 x 1,300L, 3 x 1000 L, 2 x 500 L and 1 x100 L stainless steel hydrogenation reactors (maximum rating 100 atm)
- 1 x 1000 L and 1 x 100 L glass lined hydrogenation reactor (10 atm)
- Our own proprietary catalysts





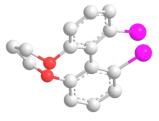


# **Chiral Quest Suzhou – Headquarters**



#### Headquarters

- Chiral Quest has its HQ on the Suzhou Industrial Park
- The new R&D center and HQ houses 31 employees and was opened in July 2013






- R&D, Administration, Finance, HR, QA/QC and business development functions are located at the new Suzhou HQ
- Chiral Quest employs 3 PhD, 5 MS and 6 BS level chemists and 5 analysts
- Chiral Quest has a total of 240 employees



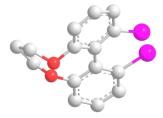
#### Chiral Quest Suzhou – R&D Centre



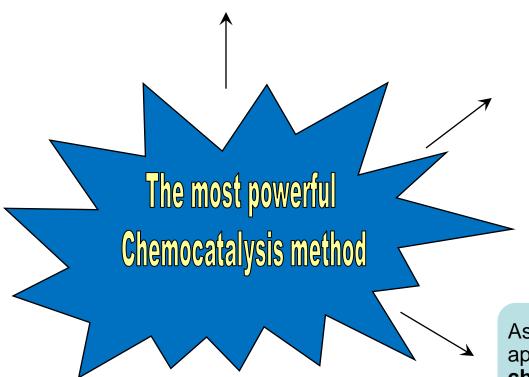
#### **Research & Development**

- All R&D is carried out in the new Suzhou R&D Centre
- Modern and well equipped chemical Laboratories for >40 chemists






- Glove boxes for handling air-sensitive compounds
- Analytical equipment, including HPLC's, GC's
  - and LCMS






# **Catalytic Asymmetric Hydrogenation**



Avoids wasteful production of 50% of the wrong isomer



Over **70%** of commercial asymmetric catalytic processes involve asymmetric hydrogenation

Asymmetric hydrogenation can be applied to make over **50% of all chiral moieties** in pharma products

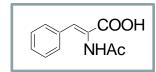
**Nobel Prize in Chemistry 2001** 



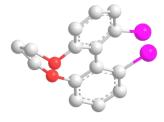
#### **Reactions Under Pressure!**



Reproduced with the kind permission of Chimica Oggi/Chemistry Today







# Some of the First Applied Phosphine Ligands

| Ligand                               | % ee | Ligand                                        | % ee | Ligand                                                | % ee |
|--------------------------------------|------|-----------------------------------------------|------|-------------------------------------------------------|------|
| Pr<br>P··CH <sub>3</sub><br>•<br>Ph  | 28%  | MeO<br>P P<br>OMe                             | 95%  | Ph <sub>2</sub> P PPh <sub>2</sub>                    | 95%  |
| 1968                                 |      | DIPAMP - 1974                                 |      | CHIRAPHOS - 197                                       | 7    |
| P'CH <sub>3</sub><br>OMe             | 88%  | PPh <sub>2</sub> PPh <sub>2</sub>             | 87%  | Ph <sub>2</sub> P<br>N<br>PPh <sub>2</sub><br>BOC     | 91%  |
| CAMP - 1970                          |      | Rhone-Poulenc - 197                           | 74   | BPPM -1976                                            |      |
| PPh <sub>2</sub><br>PPh <sub>2</sub> | 83%  | Ph. NHPPh <sub>2</sub> Ph. NHPPh <sub>2</sub> | 94%  | NMe <sub>2</sub> PPh <sub>2</sub> Fe PPh <sub>2</sub> | 93%  |
| DIOP - 1971                          |      | PNNP - 1974                                   |      | BPPFA - 1980                                          |      |





# **Early Applications of Asymmetric Hydrogenation**

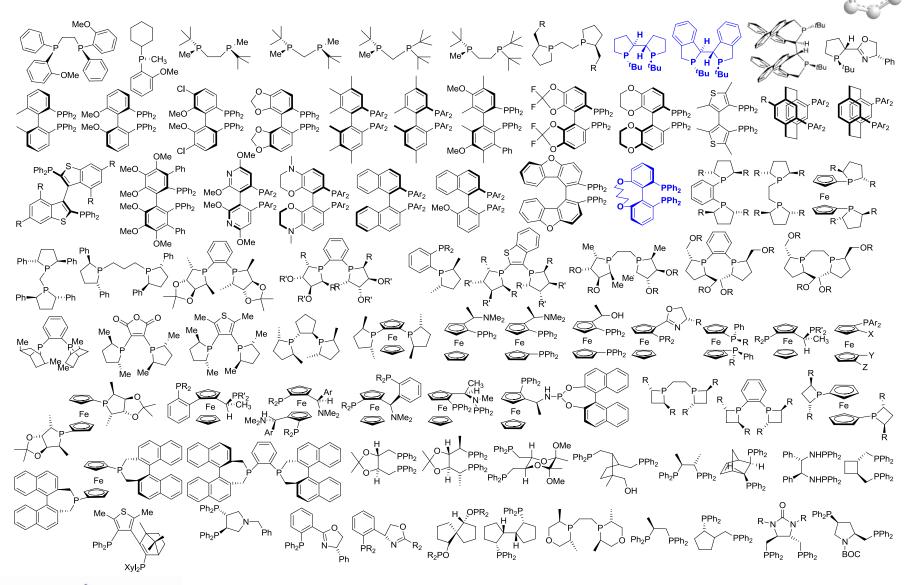


$$CO_2H$$
 $RhCl-L_3$ 
 $CO_2H$ 
 $L=: Pro-CH_3$ 
 $Ph$ 
 $Ph$ 

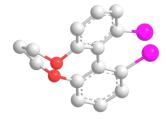
W.S. Knowles and M. J. Sabacky *Chem. Commun.*, **1968**, 1445 L. Horner et al. *Angew. Chem., Int. Ed. Engl.* **1968**, *7*, 942

#### Monsanto L-DOPA process

ACO NHAC 
$$\frac{[(R,R)\text{-Me-DIPAMP-Rh(COD)}]}{\text{H}_2}$$


$$\frac{\text{MeO}}{\text{OMe}}$$

$$\frac{\text{DIPAMP}}{\text{DIPAMP}} = \frac{\text{COOH}}{\text{NHAC}}$$


W.S. Knowles Angew. Chem., Int. Ed. 2002, 41, 1998



# Some of the 3,000 Known Phosphine Ligands



# **Noyori's Binap Complexes**



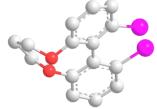
O O O 
$$[RuCl_2 ((R)-Binap)]_2 NEt_3$$
 OH O  $NHCOC_6H_5$  NHCOC $_6H_5$  NHCOC $_6H_5$  100% Conv. 98% ee, syn:anti =94:6 120 tonnes per year Carbapenem intermediate

Asymmetric Catalysis in Organic Synthesis, R. Noyori John Wiley & Sons, **1994** 

S. A. King et al *J. Org. Chem.* **1992**, *57*, 6689



# Largest Scale Industrial Asymmetric Hydrogenation




$$CH_3O \qquad CH_3O \qquad CH_3$$

Hans-Ulrich Blaser Adv. Synth. Catal. 2002, 344, 17



#### **BASF Menthol Process**




$$\frac{\mathsf{Rh}(\mathsf{CO})_2\text{-}[(\mathsf{S},\mathsf{S})\text{-}\mathsf{ChiroPhos}]}{\mathsf{Neat},\ 1:1\ \mathsf{CO}/\mathsf{H}_2\ 8\ \mathsf{bar},}$$
 
$$\mathsf{Geranial} \qquad \qquad (+)\text{-}(\mathit{R})\text{-}\mathsf{Citronellal}$$

- Worldwide consumption of Menthol is 20,000 MT
- Takasago and Symrise manufacture 5,000 MT
- Rest comes from natural sources
- BASF capacity for Menthol is 3 5,000 MT, sells for \$19/kg
- BASF back integrated into Geranial



# **Application of Asymmetric Hydrogenation to Drugs**



Ca<sup>2+</sup>

$$H_2N$$
  $CO_2H$ 

$$\bigcup_{O} \bigcap_{O} \bigcap_{N} \bigcap_{O} \bigcap_{N} \bigcap_{O} \bigcap_{O} \bigcap_{N} \bigcap_{O} \bigcap_{O$$

Atorvastatin Pfizer, 1997, Hyperlipidemia

Levetiracetam UCB, 2000, Epilepsy Rh-DuPhos

Pregabalin
Pfizer, 2004, Neuropathic pain
[(*R*,*R*)-Me-DuPhos Rh]

Solifenacin Astellas, 2004, Overactive bladder

(S)-Duloxetine Lilly, 2004, Depression

Rozerem Takeda, 2005, insomnia BINAP-Ru

Sitagliptin Merck, 2006, Diabetes <sup>t</sup>Bu-JosiPhos-Rh

Aliskiren Novartis, 2007, Hypertension MonoPhos-Rh, WalPhos-Rh

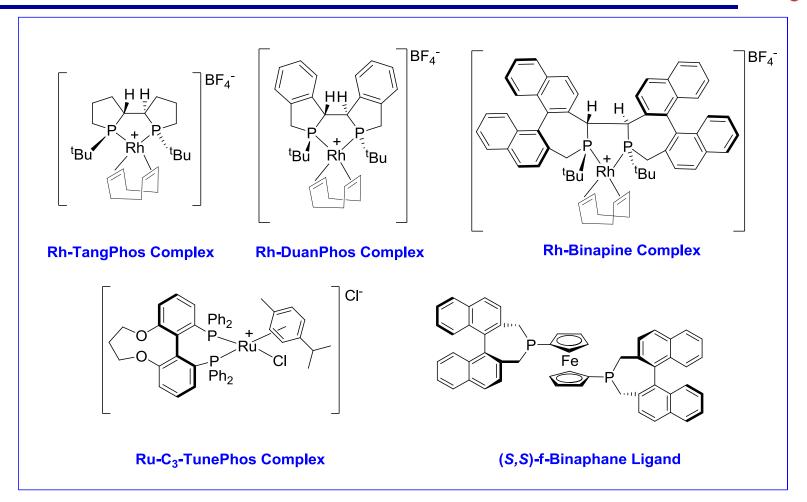
Eslicarbazepine acetate, Eisai, 2009, Epilepsy RuCl(S,S-TsDPEN(p-Cymene)]



#### Merck's Hydrogenation Route to Sitagliptin



Diabetes type 2 2012 Sales \$5.98 Billion, Patent Expiry 2022


- Hydrogenation is of an advanced imine intermediate, but catalyst loading high.
- Rh is recovered onto Ecosorb and sent for refining 94% recovery
- First ever final stage asymmetric hydrogenation process for a API
- Probably the largest Scale Asymmetric Hydrogenation for an API -100-200 MT/year
- 2006 Presidential Green Chemistry Award!

# Asymmetric Hydrogenation: A Sustainable Technology?

- Can achieve very good catalyst loadings (S/C >120,000/1)
- Single solvent, substrate, hydrogen and catalyst
- Provides pure product, single solvent and catalyst Easy Work-up
- Metal is not destroyed and can be recovered!
- ❖ 30,000 kg of rhodium consumed worldwide in 2012
- ❖ 24,300 kg (81%) went into Catalytic Converters (¹/₃ recovered)
- ❖ 964 kg of rhodium was used in the glass industry
- 2,520 kg in the chemical industry (not Pharmaceuticals!)
- Pharmaceuticals comes behind Dentistry, Jewellery and electronics in Rh usage
- This technology meets many of the Principles of Green Chemistry

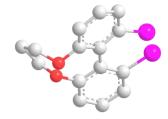


# **Chiral Quest Asymmetric Hydrogenation Catalysts**



- Catalysts made on a Kg scale for our manufacturing requirements
- >30 kg of DuanPhos made to support manufacturing

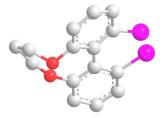
# **RSM's Made Using Asymmetric Hydrogenation**




| Clinical Phase            | Approx. Volume |  |
|---------------------------|----------------|--|
| FDA Approved              | >5 MT          |  |
| FDA Approved              | >4 MT          |  |
| FDA Approved – 3 products | 100-200 kg     |  |
| Pre-Registration          | >10 MT         |  |
| PIII – 2 products         | 1 to >3 MT     |  |
| PII – 2 products          | 100 – 200 kg   |  |
| PI – 3 products           | 50 – 100 kg    |  |
| Pre-Clinical – 3 products | 1-10 kg        |  |

- Chiral Quest applies Asymmetric Hydrogenation Technology for 16-20 products
- Many of these are now on MT scale
- We can manufacture 130-150 MT of products per year




#### Manufacture of $\alpha$ -Amino Acids



Same Rh-DuanPhos catalyst can produce many Phenylalanine products



#### Manufacture of (S)-N-Boc-3,4-Difluorophenylalanine




- Vantia therapeutics made a request for 15 kg of (S)-N-Boc-3,4-Difluorophenylalanine
- The product was made, shipped and received by the customer in under 10 weeks from receipt of a purchase order
- Conditions for the Rh-DuanPhos hydrogenation are mild and scaleable.



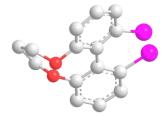


#### Route to *N*-Boc-(*S*)-2,6-Dimethyltyrosine



HO

CHO


$$Ac_2O$$
 $Ac_2O$ 
 $A$ 

AcO NHAc 
$$S/C = 3,000/1, 1290/1 \text{ wt/wt}$$
 AcO NHAc  $= 1000 \text{ NHAc}$   $= 10000 \text{ NHAc}$   $= 1000 \text{ NHAc}$   $= 10000 \text{ NHAC}$   $= 10000 \text{ NHAC}$   $= 10000 \text$ 

- The Erlenmeyer route does not work for the sterically hindered aldehyde
- The Horner-Emmons reagent is routinely manufactured on a MT scale
- This reagent is now routinely used for  $\alpha$ -amino acid manufacture



#### 4-Fluoro-D-phenylalanine Benzyl ester Ts Salt




- Chiral Quest has manufactured 5 and 50 kg lots of this product for CML Europe
- High enantiomeric excess (99.9%) and purity (99.5%) was achieved.





# Chiral Quest Advantaged Chiral API's and Intermediates



Examples of Active Pharmaceutical Ingredients that can be manufactured using Chiral Quest Technology



# Synthesis of a Dorzolamide Intermediate



- Asymmetric hydrogenation of methyl acetoacetate requires a Hastelloy reactor
- Chiral Quest has a 1,000 L Hastelloy hydrogenation vessel
- >5MT of this intermediate has been manufactured



# **Intermediate for Aprepitant**

- In excess of 10 MT of the chiral alcohol for Aprepitant has been manufactured
- Chiral Quest obtained a license for the ketone hydrogenation technology from the Japan Science & Technology Agency in December 2009



#### Chiral Quest's Approach to the Key Intermediate of Duloxetine



$$\frac{\text{OH}}{\text{NHMe}} \xrightarrow{\text{NHMe}} \frac{\text{NHMe}}{\text{NHMe}} = \frac{\text{NHMe}}{\text{NHMe}} = \frac{\text{OH}}{\text{NHMe}} = \frac{\text{OH}}{\text{OH}} = \frac{\text{OH}}{\text{OH$$

starting material

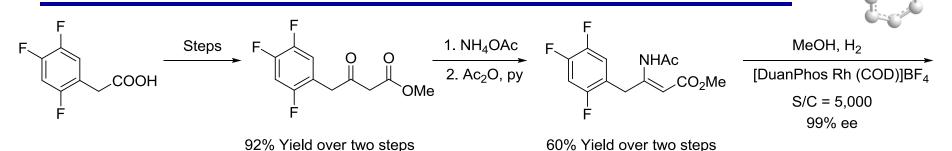
(S)-Duloxetine (Cymbalta<sup>TM</sup>)

Antidepressants, Reuptake Inhibitors 2012 sales, **\$5.3 Billion** 

- Process transferred to Jiang Xi Long Life and is in routine production.
- ❖ >30,000 kg of MMAA has been manufactured , >99% ee, >99% purity

Chiral Quest has filed a US DMF for the MMAA process – Ref. Number 26862 REACH Registration completed – Registration No. 01-2120053179-54-0000



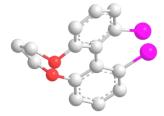

Lonza

#### **Traditional Routes to Duloxetine**



- DMAA is made by resolution
- Methyl Chloride is the by-product of demethylation!
- An extra purification process by an oxalate salt is required

#### **Chiral Quest's Route to Sitagliptin Intermediate**




Diabetes type 2 2012 Sales \$5.98 Billion, Patent Expiry 2022

- Highly efficient asymmetric hydrogenation process, S/C = 5,000 (2,360/1 wt/wt)
- Three manufacturing campaigns completed >25,000 kg made.
- Granted US and Chinese patents, US 8,278,486 B2 and CN102271504B. Pending in Europe and India.
- Chiral Quest has filed a US DMF for the Sitagliptin process Ref. Number 27115



#### **Summary**



- Many products are made annually using Asymmetric Hydrogenation
- The process is highly efficient, providing high enantiomer excess, high purity and producing very little waste.
- If volumes are high enough, then continuous flow plants can be built
- Unfortunately, this is rarely the case in Pharmaceuticals
- Chiral Quest offers the manufacture of a range of products on a commercial scale, such as Chiral Alcohols,  $\alpha$  and  $\beta$ -Amino acids using this technology





# A Recognized Leader in Chiral and Process Chemistry

